精英家教网 > 高中数学 > 题目详情

已知直角梯形,沿折叠成三棱锥,当三棱锥体积最大时,求此时三棱锥外接球的体积

解析试题分析:

折成直二面角时,体积最大,取中点,连接,由已知得为等腰直角三角形,,,,,所以此时三棱锥外接球的球心为的中点,,.
考点:球与几何体的组合体

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点)

(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是边长为的正方形,平面的中点.

(1)求证:平面
(2)求证:平面
(3)求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABEF中,,讲DCEF沿CD折起,使得,得到一个几何体,

(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,是等边三角形,.

(1)证明::
(2)证明:
(3)若,且平面平面,求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)证明直线BC∥EF;
(2)求棱锥FOBED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PBPD=2,PA.
 
(1)证明:PCBD
(2)若EPA的中点,求三棱锥PBCE的体积.

查看答案和解析>>

同步练习册答案