【题目】已知△ABC的内角A、B、C所对的边分别为a,b,c,满足tanA= .
(1)若A ,求角A;
(2)若a ,试判断△ABC的形状.
【答案】
(1)解:由余弦定理知:b2+c2﹣a2=2bccosA,
∴ ,
∵ ,
∴
(2)解: ,
由正弦定理有: ,而A=B+C,
∴ ,即 ,
而sinC≠0,∴ ,∴ ,
∵B∈(0,π),∴ ,
又由(1)知 ,
∵A∈(0,π)及 ,∴ ,从而 ,
因此△ABC为正三角形
【解析】1、根据题意利用余弦定理可求出sinA的值,进而得到 A的值。
2、利用正弦定理整理可得 s i n A + s i n C = s i n B c o s C + 3 s i n B s i n C ,根据A=B+C整理即得 c o s B s i n C + s i n C = s i n B s i n C,利用两角和差的正弦公式可求得s i n ( B ) = ,即得B的取值,根据题意A∈(0,π),故得 A = B = C = 。
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断: ①直线AC与直线C1E是异面直线;②A1E一定不垂直于AC1;③三棱锥E﹣AA1O的体积为定值;④AE+EC1的最小值为2 .
其中正确的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a4=6,a6=10.
(1)求数列{an}的通项公式;
(2)设等比数列{bn}各项均为正数,其前n项和Tn , 若b3=a3 , T2=3,求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的函数f(x)满足f(x+3)=2f(x),当x∈[﹣1,2)时,f(x)= .
若存在x∈[﹣4,﹣1),使得不等式t2﹣3t≥4f(x)成立,则实数t的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学巨著,内容极为丰富,其中卷六《均输》里有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”(“钱”是古代的一种重量单位),则其中第二人分得的钱数是( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数 f(x)=2x﹣ 的定义域为(0,1](a为实数).
(Ⅰ)当a=﹣1时,求函数y=f(x)的值域;
(Ⅱ)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(Ⅲ)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A(﹣1,0),B(1,1),C(2,0),点P是平面直角坐标系xOy上一点,且 =m (m,n∈R),
(1)若m=1,且 ∥ ,试求实数n的值;
(2)若点P在△ABC三边围成的区域(含边界)上,求m+3n的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com