【题目】已知函数,则函数的零点个数为( )(是自然对数的底数)
A.6B.5C.4D.3
【答案】B
【解析】
利用导数研究函数的性质,如单调性,函数值的变化趋势和,函数的极值.再研究方程的解的个数,即直线与函数的公共点的的取值,从而利用函数的性质求得零点个数.
时,是增函数,,
时,,,显然,
由,
作出和的图象,如图,是增函数,在是减函数
它们有一个交点,设交点横坐标为,易得,,
在时,,,时,,,
所以在上递减,在上递增,是的极小值,也是在时的最小值.,,,即,,
时,,时,.作出的大致图象,作直线,如图,时与的图象有两个交点,即有两个解,.
时,,,由得,而时,,,所以直线与在处相切.即时方程有一个解.
,令,则,由上讨论知方程有三个解:()
而有一个解,和都有两个解,所以有5个解,
即函数有5个零点.
故选:B.
科目:高中数学 来源: 题型:
【题目】若动点到两点的距离之比为.
(1)求动点的轨迹的方程;
(2)若为椭圆上一点,过点作曲线的切线与椭圆交于另一点,求面积的取值范围(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
若AD=1,二面角CABD的平面角的正切值为,求二面角BADE的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为且满足,当时,.
(1)判断在上的单调性并加以证明;
(2)若方程有实数根,则称为函数的一个不动点,设正数为函数的一个不动点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆()的左右顶点为,上下顶点为,菱形的内切圆的半径为,椭圆的离心率为.
(1)求椭圆的方程;
(2)设是椭圆上关于原点对称的两点,椭圆上一点满足,试判断直线与圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以正四棱锥VABCD的底面中心O为坐标原点建立空间直角坐标系Oxyz,其中Ox∥BC,Oy∥AB,E为VC的中点.正四棱锥的底面边长为2a,高为h,且有cos〈,〉=-.
(1)求的值;
(2)求二面角B-VC-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四面体有五条棱长为3,且外接球半径为2.动点P在四面体的内部或表面,P到四个面的距离之和记为s.已知动点P在,两处时,s分别取得最小值和最大值,则线段长度的最小值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com