精英家教网 > 高中数学 > 题目详情

(12分)如图,在长方体中,,点E为AB的中点.

(Ⅰ)求与平面所成的角;
(Ⅱ)求二面角的平面角的正切值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧面底面,,中点,底面是直角梯形,,,

(1) 求证:平面
(2) 求证:平面平面
(3) 设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面底面.已知

(Ⅰ)证明
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形均为全等的直角梯形,且.

(Ⅰ)求证:平面
(Ⅱ)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为平行四边形,平面中点.

(1)求证:平面
(2)若,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,
. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.
(I)求证:平面平面
(II)求直线与平面所成角的正弦值;
(III)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

查看答案和解析>>

同步练习册答案