精英家教网 > 高中数学 > 题目详情

【题目】已知直线与椭圆相交于两点,与轴, 轴分别相交于点和点,且,点是点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.

(1)椭圆的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,求椭圆的方程;

(2)当时,若点平分线段,求椭圆的离心率.

【答案】(1);(2).

【解析】试题分析:

(1)结合题意利用待定系数法列出关于 的方程组,求解方程组即可得到椭圆 的标准方程;

(2)结合(1)中的结论联立直线与椭圆的方程,结合题意得到 的值,利用点平分线段 ,然后结合根与系数的关系得到关于 的齐次方程 ,据此得到结论 ,然后求解椭圆的离心率即可,注意检验结果的合理性.

试题解析:

(1)由题意得

∴所以椭圆的方程为

(2)当时,由

,

,

∴直线的方程为

,由

,∴

,由

,∴

∵点平分线段,∴

,∴

,代入椭圆方程得,符合题意,

,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ()在定义域内仅有唯一零点.

(1)若对,不等式恒成立,求实数的最大值;

(2)设函数,对于 ,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行的三色球购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级

摸出红、蓝球个数

获奖金额

一等奖

31

200

二等奖

30

50

三等奖

21

10

其余情况无奖且每次摸奖最多只能获得一个奖级.

1求一次摸奖恰好摸到1个红球的概率;

2求摸奖者在一次摸奖中获奖金额X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面为正三角形,,点分别为线段的中点,分别为线段上一点,且.

(1)确定点的位置,使得平面

(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 (为实数).

(1)若,求证:函数上是增函数;

(2)求函数上的最小值及相应的的值;

(3)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产 两种产品,根据市场调查与预测, 产品的利润与投资关系如图(1)所示; 产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资单位:万元).

1)分别将 两种产品的利润表示为投资的函数关系式;

2)已知该企业已筹集到 万元资金,并将全部投入 两种产品的生产.问怎样分配这 万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域;

(2)判定函数的单调性,并证明你的结论;

(3)若当时, 恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求的值;

(2)讨论方程的实数根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中是假命题的是

A. “昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿”此推理属于演绎推理.

B. “在平面中,对于三条不同的直线 ,若 ,将此结论放到空间中也成立” 此推理属于合情推理.

C. ”是“函数 存在极值”的必要不充分条件.

D. ,则的最小值为.

查看答案和解析>>

同步练习册答案