精英家教网 > 高中数学 > 题目详情
(文)如图,已知双曲线
x2
a2
-
y2
b2
=1
,F1,F2分别是它的左、右焦点,P2P⊥F1F2,交双曲线于P点,连接F1P交双曲线于另一点Q,分别与双曲线的渐近线交于A,B,且∠F1PF2=60°.
(1)求双曲线的离心率;(2)求
|PQ|
|AB|
的值.
(1)△F1F2P中,|F1F2|=2c∠F1PF2=60°
|F1P|=
4C
3
,|F2P|=
2C
3
…(2分)
|F1P|-|F2P|=
2C
3
=2a

e=
c
a
=
3
…(5分)
(2)∵e=
3

∴b2=2a2
设双曲线方程为
x2
a2
-
y2
2a2
=1

即2x2-y2=2a2,①…(7分)
直线PF1y=
3
3
(x+c)

y=
3
3
(x+
3
a)
,②…(8分)
由①②得5x2-2
3
ax-9a2=0

|PQ|=
1+k2
|x1-x2|=
1+
1
3
12a2+180a2
5
=
16
5
a
…(11分)
再由双曲线的渐进线方程2x2-y2=0,
∴|AB|=
4
6
5
a

|PQ|
|AB|
=
2
6
3
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)如图,已知矩形ACEF的边CE与正方形ABCD所在平面垂直,AB=
2

AF=1,M是线段EF的中点.
(1)求异面直线CM与直线AB所成的角的大小;
(2)求多面体EFABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)(文)如图,已知双曲线
x2
a2
-
y2
b2
=1
,F1,F2分别是它的左、右焦点,P2P⊥F1F2,交双曲线于P点,连接F1P交双曲线于另一点Q,分别与双曲线的渐近线交于A,B,且∠F1PF2=60°.
(1)求双曲线的离心率;(2)求
|PQ|
|AB|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年临沂一模文)(12分)

如图,已知△ABC中,|AC|=1,∠ABC=,∠BAC=θ,记

(1)       求关于θ的表达式;

(2)       求的值域。

查看答案和解析>>

科目:高中数学 来源:2004年浙江省宁波市十校高三联考数学试卷(解析版) 题型:解答题

(文)如图,已知双曲线,F1,F2分别是它的左、右焦点,P2P⊥F1F2,交双曲线于P点,连接F1P交双曲线于另一点Q,分别与双曲线的渐近线交于A,B,且∠F1PF2=60°.
(1)求双曲线的离心率;(2)求的值.

查看答案和解析>>

同步练习册答案