精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.

1)求证:AC1∥平面PBD

2)求证:BDA1P

【答案】(1)见解析;(2)见解析

【解析】

1)连接ACBDO点,连接OP,证出AC1OP,再由线面平行的判定定理即可证出.

2)首先由线面垂直的判定定理证出BD⊥面AC1,再由线面垂直的定义即可证出.

1

连接ACBDO点,连接OP

因为四边形ABCD是正方形,对角线ACBD于点O

所以O点是AC的中点,所以AO=OC

又因为点P是侧棱C1C的中点,所以CP=PC1

ACC1中,,所以AC1OP

又因为OPPBDAC1PBD

所以AC1∥平面PBD

2)连接A1C1.因为ABCDA1B1C1D1为直四棱柱,

所以侧棱C1C垂直于底面ABCD

BD平面ABCD,所以CC1BD

因为底面ABCD是菱形,所以ACBD

ACCC1=CACAC1CC1AC1,所以BD⊥面AC1

又因为PCC1CC1ACC1A1,所以P∈面ACC1A1

因为A1∈面ACC1A1,所以A1PAC1,所以BDA1P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年上海国际青少年足球邀请赛将在6月下旬举行.一体育机构对某高中一年级750名男生,600名女生采用分层抽样的方法抽取45名学生对足球进行兴趣调查,统计数据如下所示:

1:男生

结果

有兴趣

无所谓

无兴趣

人数

2

3

2:女生

结果

有兴趣

无所谓

无兴趣

人数

12

2

(1)的值;

(2)运用独立性检验的思想方法分析:请你填写列联表,并判断是否在犯错误的概率不超过的前提下认为非“有兴趣”与性别有关系?

男生

女生

总计

有兴趣

非有兴趣

总计

(3)45人所有无兴趣的学生中随机选取2人,求所选2人中至少有一个女生的概率.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若极坐标为的点在曲线C1上,求曲线C1与曲线C2的交点坐标;

(2)若点的坐标为,且曲线C1与曲线C2交于两点,求|PB||PD|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种海洋生物身体的长度(单位:米)与生长年限(单位:年)满足如下的函数关系:.(设该生物出生时

1)需经过多少时间,该生物的身长超过8米;

2)设出生后第年,该生物长得最快,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n为正整数集合A=对于集合A中的任意元素

M=

n=3 MM的值

n=4BA的子集且满足对于B中的任意元素相同时M是奇数不同时M是偶数.求集合B中元素个数的最大值

给定不小于2nBA的子集且满足对于B中的任意两个不同的元素

M=0.写出一个集合B使其元素个数最多并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:

井号

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;

(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值(精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

查看答案和解析>>

同步练习册答案