【题目】如图,在四棱锥S﹣ABCD中,侧面SCD为钝角三角形且垂直于底面ABCD,CD=SD,点M是SA的中点,AD//BC,∠ABC=90°,AB=ADBC=a.
(1)求证:平面MBD⊥平面SCD;
(2)若∠SDC=120°,求三棱锥C﹣MBD的体积.
【答案】(1)证明见解析;(2)a3.
【解析】
(1)取BC中点E,连接DE,则AB=AD=a,BC=2a.由题意可得:四边形ABED为正方形,可得BD2+CD2=BC2,于是BD⊥CD,根据面面垂直的性质定理可得:BD⊥平面SCD,进而得出平面MBD⊥平面SCD.
(2)过点S作SH⊥CD,交CD的延长线于点H,连接AH.∠SDH为SD与底面ABCD所成的角,即∠SDH=60°.点M到平面ABCD的距离d=SH.可得三棱锥C﹣MBD的体积VBD×CDd.
(1)证明:取BC中点E,连接DE,则AB=AD=a,BC=2a.由题意可得:四边形ABED为正方形,且BE=DE=CE=a,BD=CDa.
∴BD2+CD2=BC2,则BD⊥CD,又平面SCD⊥平面ABCD,平面SCD∩平面ABCD=CD,
∴BD⊥平面SCD,BD平面MBD,∴平面MBD⊥平面SCD.
(2)解:过点S作SH⊥CD,交CD的延长线于点H,连接AH.
则∠SDH为SD与底面ABCD所成的角,即∠SDH=60°.
由(1)可得:SD=CDa,∴在Rt△SHD中,SDa,HDa,SHa.
∴点M到平面ABCD的距离da.
∴三棱锥C﹣MBD的体积VBD×CDda3.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,过曲线外的一点(其中,为锐角)作平行于的直线与曲线分别交于.
(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为 轴的正半轴建系);
(Ⅱ)若成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在,上单调递增,求实数的取值范围;
(2)若函数在处的切线平行于轴,是否存在整数,使不等式在时恒成立?若存在,求出的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.年,古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了个风蚀插钎,以测量风蚀值.(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为表示该插钎处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.
(Ⅰ)根据直方图估计“坡腰处一个插钎风蚀值小于”的概率;
(Ⅱ)若一个插钎的风蚀值小于,则该数据要标记“”,否则不标记根据以上直方图,完成列联表:
标记 | 不标记 | 合计 | |
坡腰 | |||
坡顶 | |||
合计 |
并判断是否有的把握认为数据标记“”与沙丘上插钎所布设的位置有关?
附:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创建文明城”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为120的样本,发现所给数据均在[40,100]内.现将这些分数分成以下6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形则下列说法中有错误的是( )
A.第三组的频数为18人
B.根据频率分布直方图估计众数为75分
C.根据频率分布直方图估计样本的平均数为75分
D.根据频率分布直方图估计样本的中位数为75分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+acosx.
(1)求函数f(x)的奇偶性.并证明当|a|≤2时函数f(x)只有一个极值点;
(2)当a=π时,求f(x)的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成,考虑到钢管的受力和花篮质量等因素,设计支架应满足:①三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为;②架面与架底平行,且架面三角形与架底三角形均为等边三角形;③三根细钢管相交处的节点分三根细钢管上、下两段之比均为.定义:架面与架底的距离为“支架高度”,架底三角形的面积与“支架高度”的乘积为“支架需要空间”.
(1)当时,求“支架高度”;
(2)求“支架需要空间”的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列四个结论:
①函数的最小正周期是;
②函数在区间上是减函数;
③函数的图象关于直线对称;
④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com