精英家教网 > 高中数学 > 题目详情
某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
分析:(1)根据题意先求出每件产品的利润,再乘以一年的销量,便可求出分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)根据L与x的函数关系式先求出该函数的导数,令L′(x)=0便可求出极值点,从而求出时最大利润,再根据a的取值范围分类讨论当a取不同的值时,最大利润各为多少.
解答:解:(1)分公司一年的利润L(万元)与售价x的函数关系式为:
L=(x-3-a)(12-x)2,x∈[9,11].
(2)L′(x)=(12-x)2+2(x-3-a)(12-x)×(-1)=(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x).
令L′(x)=0得x=6+
2
3
a或x=12(不合题意,舍去).
∵3≤a≤5,∴8≤6+
2
3
a≤
28
3

在x=6+
2
3
a两侧L′的值由正值变负值.
所以,当8≤6+
2
3
a≤9,即3≤a≤
9
2
时,
Lmax=L(9)=(9-3-a)(12-9)2=9(6-a);
当9<6+
2
3
a≤
28
3
,即
9
2
<a≤5时,
Lmax=L(6+
2
3
a)=(6+
2
3
a-3-a)[12-(6+
2
3
a)]2
=4(3-
1
3
a)3
Q(a)=
9(6-a)3≤a≤
9
2
4(3-
1
3
a)3
9
2
<a≤5

即当3≤a≤
9
2
时,当每件售价为9元,分公司一年的利润L最大,最大值Q(a)=9(6-a)万元;
9
2
<a≤5时,当每件售价为(6+
3
2
a)元,分公司一年的利润L最大,最大值Q(a)=4(3-
1
3
a)3万元.
点评:本题主要考查了函数的导数的求法以及利用导数来求得函数的最值问题,是各地高考的热点和难点,解题时注意自变量的取值范围以及分类讨论等数学思想的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•闸北区二模)某分公司经销某种品牌产品,每件产品的成本为2元,并且每件产品需向总公司交a元(2≤a≤6)的管理费,预计当每件产品的销售价为x元(7≤x≤9)时,一年的销售量为(12-x)万件.
(1)求该分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润L最大,并求L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a元(a为常数,2≤a≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x元时,产品一年的销售量为
kex
(e为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x最低不低于35元,最高不超过41元.
(1)求分公司经营该产品一年的利润L(x)万元与每件产品的售价x元的函数关系式;
(2)当每件产品的售价为多少元时,该产品一年的利润L(x)最大,并求出L(x)的最大值.
参考公式:(cax+b)′=aeax+b(a、b为常数)

查看答案和解析>>

科目:高中数学 来源:2010-2011年广东省高二第二学期3月月考数学理卷 题型:解答题

. (14分) 

某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.

(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;

(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年山西省高二第二学期期中考试理科数学 题型:解答题

(满分10分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品还需再向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.  

(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;

(2)当每件产品的售价为多少元时,分公司一年的利润最大,

并求出的最大值.ks.5u

 

查看答案和解析>>

同步练习册答案