ÏÂÁÐÅжϣº
¢ÙÈô
a2
+
b2
=0£¬Ôò
a
=
b
=0£»
¢ÚÒÑÖª
a
£¬
b
£¬
c
ÊÇÈý¸ö·Ç0ÏòÁ¿£¬Èô
a
+
b
=0£¬Ôò|
a
c
|=|
b
c
|£»
¢Û
a
¡¢
b
¹²Ïß?
a
b
=|
a
||
b
|£»
¢Ü|
a
||
b
|£¼2
a
b
£»
¢Ý
a
a
a
=|
a
|3£»
¢Þ
a2
+
b2
¡Ý2
a
b
£»
¢ß·ÇÁãÏòÁ¿
a
£¬
b
Âú×㣺
a
b
£¾0£¬Ôò
a
Óë
b
¼Ð½ÇΪÈñ½Ç£»
¢àÈô
a
£¬
b
µÄ¼Ð½ÇΪ¦È£¬Ôò|
b
|cos¦È±íʾÏòÁ¿
b
ÔÚÏòÁ¿
a
·½ÏòÉϵÄͶӰ³¤£¬
ÆäÖÐÕýÈ·µÄÊÇ
 
£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺ÔĶÁÐÍ,ƽÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£ºÓÉÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬¼´¿ÉÅжϢ٣»ÔËÓÃÏà·´ÏòÁ¿µÄ¶¨Ò壬¼´¿ÉÅжϢڣ»ÓÉÏòÁ¿Í¬ÏòºÍ·´Ïò£¬½áºÏÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬¼´¿ÉÅжϢۣ»ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÏòÁ¿µÄ¼Ð½Ç£¬¼´¿ÉÅжϢܣ»ÓÉÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬¼´¿ÉÅжϢݣ»ÔËÓÃÖØÒª²»µÈʽºÍÏòÁ¿µÄÊýÁ¿»ýµÄÐÔÖÊ£¬¼´¿ÉÅжϢޣ»ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÏòÁ¿µÄ¼Ð½ÇµÄ¶¨Ò壬¼´¿ÉÅжϢߣ»ÓÉÏòÁ¿µÄͶӰµÄ¸ÅÄ¼´¿ÉÅжϢ࣮
½â´ð£º ½â£º¶ÔÓÚ¢Ù£¬Èô
a2
+
b2
=0£¬¼´|
a
|2+|
b
|2=0£¬Ôò|
a
|=|
b
|=0¼´
a
=
b
=
0
£¬Ôò¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÓÉ
a
£¬
b
£¬
c
ÊÇÈý¸ö·Ç0ÏòÁ¿£¬Èô
a
+
b
=0£¬Ôò|
a
c
|=|-
b
c
|=|
b
c
|£¬Ôò¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬
a
¡¢
b
¹²Ïß?
a
b
=¡À|
a
||
b
|£¬Ôò¢Û´íÎó£»
¶ÔÓڢܣ¬|
a
|•|
b
|-2
a
b
=|
a
|•|
b
|-2|
a
|•|
b
|cos£¼
a
£¬
b
£¾=|
a
|•|
b
|£¨1-2cos£¼
a
£¬
b
£¾£©£¬
µ±£¼
a
£¬
b
£¾=
¦Ð
3
ʱ£¬|
a
||
b
|=2
a
b
£¬Ôò¢Ü´íÎó£»
¶ÔÓڢݣ¬
a
a
a
=£¨
a
2
£©
a
=|
a
|2
a
£¬Ôò¢Ý´íÎó£»
¶ÔÓÚ¢Þ£¬
a2
+
b2
¡Ý2|
a
|•|
b
|¡Ý2
a
b
£¬Ôò¢ÞÕýÈ·£»
¶ÔÓڢߣ¬·ÇÁãÏòÁ¿
a
£¬
b
Âú×㣺
a
b
£¾0£¬Ôò
a
Óë
b
¼Ð½ÇΪÈñ½Ç»òͬÏò£¬Ôò¢ß´íÎó£»
¶ÔÓڢ࣬Èô
a
£¬
b
µÄ¼Ð½ÇΪ¦È£¬Ôò|
b
|cos¦È±íʾÏòÁ¿
b
ÔÚÏòÁ¿
a
·½ÏòÉϵÄͶӰ£¬Ôò¢à´íÎó£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Þ£®
µãÆÀ£º±¾Ì⿼²éÏòÁ¿µÄ»ù´¡ÖªÊ¶£ºÏòÁ¿µÄ¹²ÏߺÍÄ£ºÍÊýÁ¿»ýµÄÐÔÖÊ£¬ÏòÁ¿µÄ¼Ð½ÇºÍͶӰµÄ¸ÅÄעÒâÔËÓö¨ÒåºÍµÈ¼ÛÐÔÊÇÅжϵĹؼü£¬ÊôÓÚ»ù´¡ÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ex-x2+aµÄͼÏóÔÚµãx=0´¦µÄÇÐÏßΪy=bx£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©µ±x¡ÊRʱ£¬ÇóÖ¤£ºf£¨x£©¡Ý-x2+x£»
£¨3£©Èôf£¨x£©£¾kx¶ÔÈÎÒâµÄx¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒУ¿ªÉèÁË¡°×ãÇòÉ硱¡¢¡°Ê«ÓêÎÄѧÉ硱¡¢¡°Ðñ°®¹«ÒæÉ硱Èý¸öÉçÍÅ£¬Èý¸öÉçÍŲμӵÄÈËÊýÈçϱíËùʾ£º
ÉçÍÅ×ãÇòÉçÊ«ÓêÎÄѧÉçÐñ°®¹«ÒæÉç
ÈËÊý320240200
ÒÑÖª¡°×ãÇòÉ硱ÉçÍųéÈ¡µÄͬѧ8ÈË£®
£¨1£©ÇóÑù±¾ÈÝÁ¿nµÄÖµºÍ´Ó¡°Ê«ÓêÎÄѧÉ硱ÉçÍųéÈ¡µÄͬѧµÄÈËÊý£»
£¨2£©Èô´Ó¡°Ê«ÓêÎÄѧÉ硱ÉçÍųéÈ¡µÄͬѧÖÐÑ¡³ö2È˵£ÈθÃÉçÍÅÕý¡¢¸±É糤µÄÖ°Îñ£¬ÒÑÖª¡°Ê«ÓêÎÄѧÉ硱ÉçÍű»³éÈ¡µÄͬѧÖÐÓÐ2ÃûÅ®Éú£¬ÇóÖÁÉÙÓÐ1ÃûŮͬѧ±»Ñ¡ÎªÕý¡¢¸±É糤µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=ex+x2+x+1Óëg£¨x£©µÄͼÏó¹ØÓÚÖ±Ïß2x-y-3=0¶Ô³Æ£¬P£¬Q·Ö±ðÊǺ¯Êýf£¨x£©£¬g£¨x£©Í¼ÏóÉϵĶ¯µã£¬Ôò|PQ|µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
5
5
B¡¢
5
C¡¢
2
5
5
D¡¢2
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÍÖÔ²µÄ·½³ÌΪ
x2
10-a
+
y2
a-2
=1£¬ÇÒ´ËÍÖÔ²µÄ½¹¾àΪ4£¬ÔòʵÊýa=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ã
an
an+2
=
1
2
an+1£¨n¡ÊN+£©£¬a1=1
£¨1£©ÇóÖ¤£ºÊýÁÐ{
1
an
}ÊǵȲîÊýÁУ»
£¨2£©Éèbn±íʾÊýÁÐ{an}ÔÚÇø¼ä£¨£¨
1
2
£©n£¬£¨
1
2
£©n-1]ÉϵÄÏîµÄ¸öÊý£¬ÊÔÇóÊýÁÐ{
bn
an
}µÄÇ°nÏîºÍSn£¬²¢Çó¹ØÓÚnµÄ²»µÈʽSn£¼2013×î´óÕýÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÃݺ¯Êýf£¨x£©=mx¦ÁµÄͼÏó¾­¹ýµãA£¨
1
4
£¬
1
2
£©£¬ÔòËüÔÚµãA´¦µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A¡¢2x-y=0
B¡¢2x+y=0
C¡¢4x-4y+1=0
D¡¢4x+4y+1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µãA£¨1£¬
2
16
£©£¬Pn£¨1-
1
2n
£¬0£©£¨n¡ÊN*£©£®¼ÇÖ±ÏßAPnµÄÇãб½ÇΪ¦Án£¬¡ÏPnAPn+1=¦Èn£¬¡÷PnAPn+1µÄÃæ»ýΪSn£¬Çó£º
£¨1£©¦Á4£¨Ó÷´Èý½Çº¯ÊýÖµ±íʾ£©£»
£¨2£©Sn¼°Ôò 
lim
n¡ú¡Þ
£¨S1+S2+¡­+Sn£©£»
£¨3£©¦ÈnµÄ×î´óÖµ¼°ÏàÓ¦nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦Á£¬¦Â£¬Ö±Ïßl£¬m£¬ÇÒÓÐl¡Í¦Á£¬m?¦Â£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈô¦Á¡Î¦Â£¬Ôòl¡Ím£»¢ÚÈôl¡Îm£¬Ôò¦Á¡Í¦Â£»¢ÛÈô¦Á¡Í¦Â£¬Ôòl¡Îm£»¢ÜÈôl¡Ím£¬Ôò¦Á¡Î¦Â£»
ÆäÖУ¬ÕýÈ·ÃüÌâ¸öÊýÓУ¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸