精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=e2x1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

【答案】
(1)解: a=1时,f(x)=e2x1(x2+x﹣1),

f′(x)=e2x1(2x2+4x﹣1),

∴f(1)=e,f′(1)=5e,

故切线方程是:y﹣e=5e(x﹣1),

即y=5ex﹣4e;


(2)解:f′(x)=e2x1[2x2+(2a+2)x﹣4a2+a+2],

令f′(x)=0,得:2x2+(2a+2)x﹣4a2+a+2=0,

而△=4(9a2﹣3),

当△≤0时,即:﹣ ≤a≤ 时,f′(x)≥0恒成立,

∴f(x)在R递增.


【解析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C上的动点P)满足到定点A(-1,0)的距离与到定点B1,0)距离之比为

(1)求曲线C的方程。

(2)过点M(1,2)的直线与曲线C交于两点MN,若|MN|=4,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近日,某公司对其生产的一款产品进行促销活动,经测算该产品的销售量P(单位:万件)与促销费用x(单位:万元)满足函数关系:p=3﹣ (其中0≤x≤a,a为正常数).已知生产该产品件数为P(单位:万件)时,还需投入成本10+2P(单位:万元)(不含促销费用),产品的销售价格定为(4+ )元/件,假定生产量与销售量相等.
(1)将该产品的利润y(单位:万元)表示为促销费用x(单位:万元)的函数;
(2)促销费用x(单位:万元)是多少时,该产品的利润y(单位:万元)取最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点到两定点的距离比为,点到直线的距离为

求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在R上的导函数为f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,则不等式f(x)>e 的解集是(
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 在线段上运动且不与 重合,给出下列结论:

平面

二面角的大小随点的运动而变化;

三棱锥在平面上的投影的面积与在平面上的投影的面积之比随点的运动而变化;

其中正确的是(

A. ①③④ B. ①③

C. ①②④ D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分图象如图所示,若A( ),B( ).则下列说法错误的是(

A.φ=
B.函数f(x)的一条对称轴为x=
C.为了得到函数y=f(x)的图象,只需将函数y=2sin2x的图象向右平移 个单位
D.函数f(x)的一个单调减区间为[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的焦距为2 ,其上下顶点分别为C1 , C2 , 点A(1,0),B(3,2),AC1⊥AC2
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2 (n=1,2,3……),

(1)求{an}的通项公式;(2)设bn ,求{bn}的前n项和Tn

(3)在(2)的条件下,对任意n∈N*,Tn都成立,求整数m的最大值.

查看答案和解析>>

同步练习册答案