精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=﹣x+5上,求圆C的方程;
(2)在(1)的条件下,过点A作圆C的切线,求切线的方程;
(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.

【答案】
(1)解:由

得圆心C为(3,2),

∵圆C的半径为,∴圆C的方程为:(x﹣3)2+(y﹣2)2=1


(2)解:由题意知切线的斜率一定存在,

设所求圆C的切线方程为y=kx+3,即kx﹣y+3=0

=1

∴2k(4k+3)=0

∴k=0或者k=﹣

∴所求圆C的切线方程为:y=3或y=﹣ x+3,即y=3或者3x+4y﹣12=0


(3)解:设M为(x,y),由 =

整理得直线m:y=

∴点M应该既在圆C上又在直线m上,即:圆C和直线m有公共点

∴|2a﹣4﹣ |≤1,∴ ≤a≤

综上所述,a的取值范围为:[ ]


【解析】(1)联立直线l与直线y=﹣x+5,求出方程组的解得到圆心C坐标,可得圆C的方程;(2)根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(3)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:

是定值;②点在某个球面上运动;

③存在某个位置,使;④存在某个位置,使平面.

其中正确的命题是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数),为自然对数的底数.

(1)当时,求实数的取值范围;

(2)当时,求使得成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2 , f(x1)≠f(x2),证明方程f(x)= 必有一个实数根属于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=﹣1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(Ⅰ)求椭圆的方程

(Ⅱ)设是椭圆上的点直线为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点使得为定值若存在的坐标若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 的中点, 为线段上的动点,过点 的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;

③当时, 的交点满足

④当时, 为五边形;

⑤当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及点

(1)在圆上,求线段的长及直线的斜率;

(2)若为圆上任一点,求的最大值和最小值;

(3)若实数满足,求的最大值和最小值.

查看答案和解析>>

同步练习册答案