精英家教网 > 高中数学 > 题目详情

【题目】

设函数

(Ⅰ)若是函数的极值点,1和的两个不同零点,且

,求的值;

(Ⅱ)若对任意, 都存在 为自然对数的底数),使得

成立,求实数的取值范围.

【答案】(1)3, (2)详见解析

【解析】试题分析:求导后利用为极值点,满足,在根据的零点,满足,列方程组解出,把的值代入求导,研究函数的另一个零点所在的区间,求出;由于上为增函数,只需有解,令,只需存在使得即可,对求导,再进行分类讨论.

试题解析:

(Ⅰ)是函数的极值点,∴.

∵1是函数的零点,得

,解得

,

所以上单调递减;在上单调递增

故函数至多有两个零点,其中

因为 ,

所以,故

(Ⅱ)令 ,则为关于的一次函数且为增函数,根据题意,对任意,都存在,使得成立,则

有解,

,只需存在使得即可,

由于

在(1,e)上单调递增,

①当,即时, ,即 在(1,e)上单调递增,∴,不符合题意.

② 当,即时,

,则,所以在(1,e)上恒成立,即恒成立,∴在(1,e)上单调递减,∴存在,使得,符合题意.

,则,∴在(1, e)上一定存在实数,使得

∴在(1, )上恒成立,即恒成立, 在(1,m)上单调递减,

∴存在,使得,符合题意.

综上,当时,对任意,都存在,使得成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是(
A.y=2x
B.y=
C.y=2
D.y=﹣x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】向量的运算常常与实数运算进行类比,下列类比推理中结论正确的是(
A.“若ac=bc(c≠0),则a=b”类比推出“若 = ),则 =
B.“在实数中有(a+b)c=ac+bc”类比推出“在向量中( + = +
C.“在实数中有(ab)c=a(bc)”类比推出“在向量中( = )”
D.“若ab=0,则a=0或b=0”类比推出“若 =0,则 = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(1,m)在抛物线C:y2=2Px(P>0)上,F为焦点,且|PF|=3.
(1)求抛物线C的方程;
(2)过点T(4,0)的直线l交抛物线C于A,B两点,O为坐标原点.
(ⅰ)求 的值;
(ⅱ)若以A为圆心,|AT|为半径的圆与y轴交于M,N两点,求△MNF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}. 若A∩B={2},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的单调区间;

(2)若时,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形OAB的半径为1,圆心角为120°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

查看答案和解析>>

同步练习册答案