精英家教网 > 高中数学 > 题目详情
17.通过随机询问某校高二年级学生在购买食物时是否看营养说明,得到如下列联表:
男生女生总计
看营养说明503080
不看营养说明10xy
总计60z110
参考数据:
P(K2≥K)0.100.050.010.005
K2.7063.8416.6357.879
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+c)(c+d)}$,n=a+b+c+d
(1)写出x,y,z的值
(2)根据以上列联表,问有多大把握认为“性别在购买食物时看营养说明”有关?
(3)从女生中按是否看营养说明采取分层抽样,抽取容量为5的样本,再从这5名女生中随机选取两名作深度访谈.求选到看与不看营养说明的女生各一名的概率.

分析 (1)利用列联表,可得x,y,z的值;
(2)根据性别与看营养说明列联表,求出K2的观测值k的值为7.486>6.635,再根据P(K2≥6.635)=0.01,该校高中学生“性别与在购买食物时看营养说明”有关.
(3)确定基本事件的个数,即可求选到看与不看营养说明的女生各一名的概率.

解答 解:(1)由题意,z=110-60=50,x=50-30=20,y=10+20=30;
(2)假设H0:该校高中学生性别与在购买食物时看营养说明无关,则K2应该很小.
根据题中的列联表得K2=$\frac{110×(50×20-30×10)^{2}}{80×30×60×50}$≈7.486>6.635,
由P(K2≥6.635)=0.01,
有99%的把握认为该校高中学生“性别与在购买食物时看营养说明”有关.
(3)从这5名女生中随机选取两名作深度访谈,共${C}_{5}^{2}$=10个基本事件,选到看的,有3人,与不看营养说明的,有2名,选到看与不看营养说明的女生各一名,共6个基本事件,
∴选到看与不看营养说明的女生各一名的概率为$\frac{6}{10}$=$\frac{3}{5}$.

点评 本题主要考查读图表、独立性检验等基础知识,考查数据处理能力和应用意识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,将正方形剪去两个底角为15°的等腰三角形CDE和CBF,然后沿图中所画的线折成一个正三棱锥,这个正三棱锥侧面与底面所成的二面角的余弦值为$\frac{2\sqrt{3}}{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.分别用文字语言、图形语言和符号语言书写面面平行的判定定理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-2ax+2)ex
(1)函数f(x)在x=0处的切线方程为2x+y+b=0,求a,b的值;
(2)当a>0时,若曲线y=f(x)上存在三条斜率为k的切线,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知一个扇形的周长是12cm,
(1)若扇形的圆心角α=300,求该扇形的半径
(2)当扇形半径为何值时,这个扇形的面积最大?别求出此时的圆心角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若曲线f(x)=3x+ax3在点(1,a+3)处的切线与直线y=6x平行,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在等腰三角形ABC中,已知AB=AC=2$\sqrt{7}$,∠A=120°,E、F分别是边AB、AC上的点,且$\overrightarrow{AE}=m\overrightarrow{AB}$,$\overrightarrow{AF}=n\overrightarrow{AC}$,其中m,n∈(0,1),若EF、BC的中点分别为M、N且m+2n=1,则|$\overrightarrow{MN}$|的最小值是$\sqrt{3}$;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P是椭圆$\frac{{x}^{2}}{72}$+$\frac{{y}^{2}}{36}$=1上的任意一点,过点P作圆O:x2+y2=36的切线,切线与椭圆的另一交点为点Q
(1)当点P的横坐标为3$\sqrt{2}$,且过点P作圆O的切线有两条时,求两切线斜率的和;
(2)当点P在椭圆上运动时,求线段PQ长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当m取何实数时,复数z=(m2-9m-36)+(m2-2m-15)i.
(1)是实数?
(2)是虚数?
(3)是纯虚数?

查看答案和解析>>

同步练习册答案