精英家教网 > 高中数学 > 题目详情
已知直线L过点P(2,0),斜率为
4
3
,直线L和抛物线y2
=2x相交于A,B两点,设线段AB的中点为M,求:
(1)P,M两点间的距离/PM/:(2)M点的坐标;(3)线段AB的长.
由题意可得直线l得方程为y=
4
3
(x-2)

联立方程
y=
4
3
(x-2)
y2=2x
8x2-41x+32=0
设A(x1,y1)B(x2,y2)M(x0,y0),则 x1+x2=
41
8
x1x2=4
y1+y2=
4
3
(x1+x2-4)
=
3
2

(1)x0=
x1+x2
2
=
41
16
y0=
y1+y2
2
=
3
4

P,M两点间的距离PM=
(2-
41
16
)
2
+(0-
3
4
)
2
=
15
16

(2)由(1)可得M点的坐标(
41
16
3
4
)

(3)AB=
(x1-x2)2+(y1-y2)2
=
(1+
16
9
)[(x1+x2)
2
-4x1x2]

=
25
9
(
412
64
-16
)
=
5
8
73
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两条准线间距离为3,右焦点到直线x+y-1=0的距离为
2
2

(1)求双曲线C的方程;
(2)双曲线C中是否存在以点P(1,
1
2
)
为中点的弦,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1
的顶点为A1,A2,B1,B2,焦点为F1,F2,,|A1B1|=
7
,S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,且|
OP
|=1
,是否存在上述直线l使
AP
PB
=1成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C?x2-y2=1及直线l:y=kx-1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为
2
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=4x被直线y=2x+b所截得的弦长为3
5
,则b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同焦点,则双曲线的标准方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

同步练习册答案