精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

1)讨论函数的单调性;

2)证明:在区间上只有唯一的零点.

【答案】(1)见详解;(2)证明过程见详解.

【解析】

1)先对函数求导,得到,先讨论,得到函数恒增,再讨论两种情况,利用导数的方法,解对应不等式,即可得出结果;

2)先由(1),得到当时,以及时,函数在区间上都是单调递增的,再由,即可得出结论成立.

1)因为,所以

时,,此时单调递增;

时,

①当时,恒成立,

恒成立,此时上单调递增;

②当时,令

所以上单调递增;

上单调递减;

综上:当时,单调递增;

时,上单调递增;

上单调递减;

2)由(1)知,当时,单调避增,

此时在区间上有一个零点;

时,

单调递增;,此时在区间上有一个零点;

综上可知,在区间上只有唯一的零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切,并且圆心在直线上.

(1)如果圆轴相切于点,求圆的方程;

(2)如果圆被直线截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程

年份序号x

1

2

3

4

5

6

7

8

9

年养殖山羊万只

根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:

试估计:该县第一年养殖山羊多少万只

到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,,求实数a的取值范围;

时,曲线和曲线是否存在公共切线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,,求实数a的取值范围;

时,曲线和曲线是否存在公共切线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局发布的20183月到20193月全国居民消费价格的涨跌幅情况折线图(注:20192月与20182月相比较称同比,20192月与20191月相比较称环比),根据该折线图,下列结论正确的是(

A.20183月至20193月全国居民消费价格同比均上涨

B.20183月至20193月全国居民消费价格环比有涨有跌

C.20193月全国居民消费价格同比涨幅最大

D.20193月全国居民消费价格环比变化最快

查看答案和解析>>

同步练习册答案