精英家教网 > 高中数学 > 题目详情

【题目】已知函数是自然对数的底数),处的切线方程是. 

(1)求实数 的值;

(2)若对任意的 恒成立,求实数的取值范围.

【答案】1 .(2

【解析】试题分析:(1)求出函数的导数,分别求出由切线方程可求得实数 的值;(2)由(1)得对任意的 恒成立转化为任意的 恒成立进行讨论求出的最小值,即可求得实数的取值范围.

试题解析:(1)

依题意得处的切线斜率为

联立①②解得

2)由(1)得

由任意的 恒成立,

可知任意的 恒成立,

①当时,

上都单调递增, 上单调递增,

上单调递增;

②当时,

时, ,即

上单调递减,

综上可知, 处取得最小值

,即的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一只蚂蚁在边长分别为3,4,5的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于回归分析的说法中错误的是( )

A. 回归直线一定过样本中心

B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适

C. 两个模型中残差平方和越小的模型拟合的效果越好

D. 甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,.

(1)求函数的单调性;

(2)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多边形中, 是线段上的一点,且,若将沿折起,得到几何体.

(1)试问:直线与平面是否有公共点?并说明理由;

(2)若,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果 ,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的离心率为,点P(1,)在椭圆C上,直线l过椭圆的右焦点与椭圆相交于A,B两点.

(1)求椭圆C的方程;

(2)在x轴上是否存在定点M,使得为定值?若存在,求定点M的坐标;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

月销售额

分组

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

频数

4

10

24

8

4

(1)作出这些数据的频率分布直方图;

(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);

(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.

现假设甲生产AB两种产品的单件成本分别为12元和5元,乙生产AB两种产品的单件成本分别为3元和20元,设产品AB的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为

(1)关于的表达式;当时,求证:=

(2),当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

查看答案和解析>>

同步练习册答案