精英家教网 > 高中数学 > 题目详情
10.直线y=k(x-3)与双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$只有一个公共点,则k的值有(  )
A.3个B.2个C.1个D.无数个

分析 由点(3,0)是双曲线的右顶点,利用双曲线的性质能求出与该双曲线只有一个公共点的直线的条数.

解答 解:∵双曲线方程为$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$,
∴点(3,0)是双曲线的右顶点,
直线y=k(x-3)恒过该双曲线右顶点,直线的斜率存在,直线与双曲线只有一个公共点,
所以直线的斜率与双曲线的渐近线平行与该双曲线只有一个公共点,
∴直线与该双曲线只有一个公共点的直线有2条.
故选:B.

点评 本题考查双曲线的简单性质的应用,是中档题,解题时要认真审题,要熟练掌握双曲线的简单性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线$l:y=k(x-\frac{5}{2})+\frac{3}{2}$被圆x2+y2-5x=0所截得的n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为an,若公差$d∈[{\frac{1}{7},\frac{1}{5}}]$,则n的最大取值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P在曲线y=-e-x上,点Q在曲线y=lnx上,线段PQ的中点为M,O是坐标原点,则线段OM的长的最小值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为(  )
A.(1,-2,-3)B.(1,-2,3)C.(1,2,3)D.(-1,2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=tanx-sinx,下列命题中正确的是②③④(写出所有正确命题的序号)
①f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上有3个零点;
②f(x)的图象关于点(π,0)对称;
③f(x)的周期为2π;
④f(x)在($\frac{π}{2}$,π)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若曲线$\frac{x^2}{4-m}+\frac{y^2}{13-m}=1$表示双曲线,则焦点坐标为(0,±3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出一个以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为根的方程x2-$\frac{5}{2}$x+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x,y∈R,给出四个点A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函数y=f(x);
(2)对数列{an},设a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

同步练习册答案