精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(1)求椭圆的方程;

(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

【答案】(1);(2)证明见解析;(3).

【解析】

(1)利用椭圆的定义和性质即可解出a、b、c;(2)利用点斜式方程得出直线PB的方程,与椭圆的方程联立,利用根与系数之间的关系得出点P、B的坐标之间的关系,再利用点斜式表示直线AE的方程,进而即可证明过定点;(3)分类讨论直线MN是否与x轴垂直,与椭圆方程联立得出点MN的坐标之间的关系,再表示出,进而即可求出其取值范围.

(1)由题意可得解得

∴椭圆C的方程为.

(2)如图所示:

设直线PB的方程为ykx﹣4),Bx1y1),Ex2y2),

Ax1,﹣y1).

联立消去y化为方程(1+2k2x2﹣16k2x+32k2﹣4=0,

∵直线PB与椭圆有两个不同的交点,∴△=(16k22﹣4(1+2k2)(32k2﹣4)>0.(*)

x1+x2

直线AE的方程为

y=0,则故直线AE过定点Q(1,0).

(3)①当直线MNx轴重合时,=(2,0)(﹣2,0)=﹣4;

当直线MNx轴不重合时,设直线MN的方程为myx﹣1,

联立消去x化为方程(2+m2y2+2my﹣3=0,可知△>0.

可得yM+yNyMyN

xMxN+yMyN=(myM+1)(myN+1)+yMyN=(1+m2yMyN+myM+yN)+1

=﹣4+

m2≥0,∴,∴

的取值范围是

综上可知:的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则(  )
A.A1E⊥DC1
B.A1E⊥BD
C.A1E⊥BC1
D.A1E⊥AC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在圆上存在点使得成立,则的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:表示的平面区域的面积是( )
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”

B. “x>1”“|x|>0”的充分不必要条件

C. pq为假命题,则pq均为假命题

D. 命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3x+x2>0},B={x|﹣4<x<﹣1},则(  )
A.A∩B={x|﹣4<x<﹣3}
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

同步练习册答案