【题目】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆的方程;
(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线与轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.
【答案】(1);(2)证明见解析;(3).
【解析】
(1)利用椭圆的定义和性质即可解出a、b、c;(2)利用点斜式方程得出直线PB的方程,与椭圆的方程联立,利用根与系数之间的关系得出点P、B的坐标之间的关系,再利用点斜式表示直线AE的方程,进而即可证明过定点;(3)分类讨论直线MN是否与x轴垂直,与椭圆方程联立得出点MN的坐标之间的关系,再表示出,进而即可求出其取值范围.
(1)由题意可得解得,
∴椭圆C的方程为.
(2)如图所示:
设直线PB的方程为y=k(x﹣4),B(x1,y1),E(x2,y2),
则A(x1,﹣y1).
联立,消去y化为方程(1+2k2)x2﹣16k2x+32k2﹣4=0,
∵直线PB与椭圆有两个不同的交点,∴△=(16k2)2﹣4(1+2k2)(32k2﹣4)>0.(*)
x1+x2=,.
直线AE的方程为,
令y=0,则====.故直线AE过定点Q(1,0).
(3)①当直线MN与x轴重合时,=(2,0)(﹣2,0)=﹣4;
②当直线MN与x轴不重合时,设直线MN的方程为my=x﹣1,
联立消去x化为方程(2+m2)y2+2my﹣3=0,可知△>0.
可得yM+yN=,yMyN=.
∴=xMxN+yMyN=(myM+1)(myN+1)+yMyN=(1+m2)yMyN+m(yM+yN)+1
==﹣4+,
∵m2≥0,∴,∴,
∴的取值范围是.
综上可知:的取值范围是.
科目:高中数学 来源: 题型:
【题目】如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:表示的平面区域的面积是( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要条件
C. 若p且q为假命题,则p、q均为假命题
D. 命题p:“x0∈R使得+x0+1<0”,则p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 ﹣ = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com