精英家教网 > 高中数学 > 题目详情
8.设函数$f(x)=\frac{x^2}{2}-klnx$,k∈R
(1)求f(x)的单调区间;
(2)证明:当k>0时,若f(x)存在零点,则f(x)在区间$({1,\sqrt{e}}]$上仅有一个零点.

分析 (1)由解析式求出定义域和f′(x),化简后对k进行分类讨论,根据导数与函数单调性的关系,分别求出函数的增区间、减区间;
(2)由(1)求函数的最小值,由条件列出不等式求出k的范围,对k进行分类讨论,并分别判断在区间$({1,\sqrt{e}}]$上的单调性,求出f(1)和f($\sqrt{e}$)、判断出符号,即可证明结论.

解答 解:(1)由$f(x)=\frac{{x}^{2}}{2}-klnx$得,函数的定义域是(0,+∞),
$f′(x)=x-\frac{k}{x}$=$\frac{{x}^{2}-k}{x}$;
①当k≤0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,
此时f(x)的单调递增区间为(0,+∞),无单调递减区间;
②当k>0时,由f′(x)=0得x=$\sqrt{k}$或x=-$\sqrt{k}$(舍去),
当$x>\sqrt{k}$时,f′(x)>0,
当$0<x<\sqrt{k}$时,令f′(x)<0,
所以f(x)的递减区间是(0,$\sqrt{k}$),递增区间是($\sqrt{k},+∞$);…(6分)
证明:(2)由(1)知,当k>0时,f(x)在(0,+∞)上的最小值为
f($\sqrt{k}$)=$\frac{k}{2}-k•ln\sqrt{k}$=$\frac{k(1-lnk)}{2}$.
因为f(x)存在零点,所以$\frac{k(1-lnk)}{2}≤0$,解得k≥e.
当k=e时,f(x)在(1,$\sqrt{e}$)上递减,且f($\sqrt{e}$)=0,
所以x=$\sqrt{e}$是f(x)在(1,$\sqrt{e}$]上的唯一零点.
当k>e时,f(x)在(0,$\sqrt{e}$)上单调递减,
且f(1)=$\frac{1}{2}>$0,f($\sqrt{e}$)=$\frac{e-k}{2}$<0,
所以f(x)在区间(1,$\sqrt{e}$]上仅有一个零点.
综上可知,若f(x)存在零点,则f(x)在(1,$\sqrt{e}$]上仅有一个零点…(12分)

点评 本题考查求导公式、法则,导数与函数单调性的关系,以及函数零点的转化,考查分类讨论思想,化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.y=3sin($\frac{π}{2}$-x)一4sinx的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ-1}\end{array}\right.$(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ=1,则直线l截圆C所得的弦长是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标平面内,直线l过点P(1,1),且倾斜角α=$\frac{π}{3}$.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.
(1)求圆C的直角坐标方程;
(2)设直线l与圆C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)在定义域内可导,其图象如图所示,则导函数f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作矩形ADEF,然后沿边AD将矩形ADEF翻折,使平面ADEF与平面ABCD垂直.
(1)求证:BC⊥平面BDE;
(2)若点D到平面BEC的距离为$\frac{{\sqrt{6}}}{3}$,求三棱锥F-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知焦点在y轴上的双曲线C的一条渐近线与直线$l:x+\sqrt{3}y=0$垂直,且C的一个焦点到l的距离为3,则C的标准方程为(  )
A.$\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{9}-\frac{y^2}{3}=1$C.$\frac{y^2}{4}-\frac{x^2}{6}=1$D.$\frac{x^2}{4}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示的一个几何体及其正视图如图,则其俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a=$\sqrt{3}$,b=2,c=1,那么角A的值是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案