精英家教网 > 高中数学 > 题目详情

【题目】已知球的直径是该球球面上的两点,,则棱锥的体积为_______.

【答案】

【解析】

设球心为点O,作AB中点D,连接OD,CD,说明SC是球的直径,利用余弦定理,三角形的面积公式求出S△SCD,和棱锥的高AB,即可求出棱锥的体积.

:设球心为点O,作AB中点D,连接OD,CD.因为线段SC是球的直径,

所以它也是大圆的直径,则易得:∠SAC=∠SBC=90°

所以在RtSAC中,SC=4,ASC=30° 得:AC=2,SA=2

又在RtSBC中,SC=4,BSC=30° 得:BC=2,SB=2 则:SA=SB,AC=BC

因为点D是AB的中点所以在等腰三角形ASB中,SDAB且SD===

在等腰三角形CAB中,CDAB且CD===

又SD交CD于点D 所以:AB平面SCD 即:棱锥S﹣ABC的体积:V=ABS△SCD

因为:SD=,CD=,SC=4 所以由余弦定理得:cos∠SDC=(SD2+CD2﹣SC2=(+﹣16)==

则:sin∠SDC==

由三角形面积公式得SCD的面积S=SDCDsin∠SDC==3

所以:棱锥S﹣ABC的体积:V=ABS△SCD==

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】校园准备绿化一块直径为的半圆形空地,点在半圆圆弧上,外的地方种草,的内接正方形为一水池(边上),其余地方种花,若 ,设的面积为,正方形面积为

1)用表示

2)当固定,变化时,求最小值及此时的角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:

最低气温(℃)

天数

11

25

36

16

2

以最低气温位于各区间的频率代替最低气温位于该区间的概率.

求11月份这种电暖气每日需求量(单位:台)的分布列;

若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

求曲线在点处的切线与坐标轴围成的三角形的面积

在区间上恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x

2

6

20

市场价y

102

78

120

1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③

2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;

3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式为实数)的解集为,集合.

1)若,求的取值范围;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小值及取到最小值时自变量x的集合;

(2)指出函数y的图象可以由函数ysinx的图象经过哪些变换得到;

(3)x[0m]时,函数yf(x)的值域为,求实数m的取值范围.

查看答案和解析>>

同步练习册答案