精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的图象在y轴上的截距为1,在相邻两个最值点 和(x0 , ﹣2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)= 在区间 内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间 上的对称轴方程.

【答案】
(1)解:

∴f(x)=2sin( x+φ),

代入(0,1)点,2sinφ=1,

∵φ∈(0, ),∴φ= ,∴f(x)=2sin( x+


(2)解: 1≤k<3
(3)解:

函数f(x)在区间 上的对称轴方程为 ,x=5


【解析】(1)由题意得f(0)=1,f(x)的最大值等于2,周期的一半等于 ,列出方程组解出A,ω,φ,(2) ,即可求k的取值范围;(3) ,即可求函数f(x)在区间 上的对称轴方程.
【考点精析】通过灵活运用正弦函数的单调性和正弦函数的对称性,掌握正弦函数的单调性:在上是增函数;在上是减函数;正弦函数的对称性:对称中心;对称轴即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosxcos(x﹣ ).
(1)求f( )的值.
(2)求使f(x)< 成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1= ,an+1﹣an+anan+1=0(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,下列结论中正确的是(
A.若a1+a2>0,则a2+a3>0
B.若a1+a2<0,则a2+a3<0
C.若0<a1<a2 , 则a2
D.若a1<0,则(a2﹣a1)(a2﹣a3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点为圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)若经过的直线交曲线于不同的两点,(点在点, 之间),且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率e= ,过点(0,﹣b),(a,0)的直线与原点的距离为 ,M(x0 , y0)是椭圆上任一点,从原点O向圆M:(x﹣x02+(y﹣y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1 , k2 , 试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(1,1)和B(4,﹣2),且圆心C在直线l:x+y+1=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算法如图,若输入m=210,n=117,则输出的n为(
A.2
B.3
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1 , F是棱DD1与平面BEP的交点,则DF的长为(
A.1
B.
C.
D.

查看答案和解析>>

同步练习册答案