精英家教网 > 高中数学 > 题目详情

【题目】已知函数R).

1)当时,求函数的单调区间;

2)若对任意实数,当时,函数的最大值为,求的取值范围.

【答案】)函数的单调递增区间为,单调递减区间为;(

【解析】

试题(1)求函数的单调区间,实质上就是解不等式得增区间,解不等式得减区间;(2)函数的最大值一般与函数的单调性联系在一起,本题中,其单调性要对进行分类,时,函数上单调递增,在上单调递减,不合题意,故有,按极值点0的大小分类研究单调性有最大值.

试题解析:(1)当时,

,得;令,得

函数的单调递增区间为,单调递减区间为

2)由题意

1)当时,函数上单调递增,在上单调递减,此时,不存在实

,使得当时,函数的最大值为

2)当时,令,有

时,函数上单调递增,显然符合题意.

时,函数上单调递增,

上单调递减,处取得极大值,且

要使对任意实数,当时,函数的最大值为

只需,解得,又

所以此时实数的取值范围是

时,函数上单调递增,

上单调递减,要存在实数,使得当时,

函数的最大值为,需

代入化简得

,因为恒成立,

故恒有,所以时,式恒成立,

综上,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则=

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BCDG,垂足为CtanODC=EF=12 cmDE=2 cmA到直线DEEF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点,点在椭圆.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)经过圆上一动点作椭圆的两条切线,切点分别记为,直线分别与圆相交于异于点两点.

i)当直线的斜率都存在时,记直线的斜率分别为.求证:

ii)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的正三角形中,E为边的中点,过ED.沿翻折至的位置,连结.翻折过程中,其中正确的结论是(

A.

B.存在某个位置,使

C.,则的长是定值;

D.,则四面体的体积最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的函数在区间D上恒有

1)若,求h(x)的表达式;

2)若,求k的取值范围;

3)若求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线t为参数),曲线,(为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程;

2)射线分别交AB两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:

男生

女生

支持

不支持

支持

不支持

方案一

200

400

300

100

方案二

350

250

150

250

假设所有学生对活动方案是否支持相互独立.

(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;

(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;

(Ⅲ)将该校学生支持方案的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较的大小.(结论不要求证明)

查看答案和解析>>

同步练习册答案