精英家教网 > 高中数学 > 题目详情
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1,AD的中点,那么异面直线OE和FD1所成角的余弦值等于
15
5
15
5
分析:取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∠OEH为异面直线所成的角,在△OEH中,利用余弦定理可得结论.
解答:解:取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则

∵E是CC1的中点,∴GC1∥EH
∴∠OEH为异面直线所成的角.
在△OEH中,OE=
3
,HE=
5
2
,OH=
5
2

由余弦定理,可得cos∠OEH=
OE2+EH2-OH2
2OE•EH
=
3
2•
3
5
2
=
15
5

故答案为:
15
5
点评:本题考查异面直线所成的角,考查余弦定理的运用,解题的关键是作出异面直线所成的角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求证:EF⊥B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点
(1)求证:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体中,E、F分别为DD1、BD的中点.  
(1)求证:EF∥面ABC1D1
(2)求证EF∥BD1
(3)求三棱锥VB1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(I)求证:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱锥F-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:CF⊥B1E;
(Ⅱ)求三棱锥VB1-EFC的体积.

查看答案和解析>>

同步练习册答案