精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱锥中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且.

(1)证明:平面PAC.

(2)求直线BC与平面PAC的所成角的大小.

【答案】(1)见解析;(2)

【解析】

1)连接OP,可得,利用线面平行的判定定理即可证出.

2)以O为坐标原点,以OA所在直线为x轴,OB所在直线为y轴,OS所在直线为z轴,建立空间直角坐标系,设,求出平面PAC的一个法向量,利用向量的数量积结合图形即可求解.

(1)证明:连接OP,因为OP分别为BDSD的中点,所以

平面PAC平面PAC,所以平面PAC.

(2):如图,以O为坐标原点,以OA所在直线为x轴,OB所在直线为y轴,

OS所在直线为z轴,建立空间直角坐标系.

.

设平面PAC的一个法向量为

所以,令,得

所以

所以

故直线BC与平面PAC的夹角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,以原点为圆心,为半径的定圆,与过原点且斜率为的动直线交于两点,在轴正半轴上有一个定点三点构成三角形,求:

1的面积的表达式,并求出的取值范围;

2的外接圆的面积的表达式,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点作斜率为1的直线交抛物线两点,且线段的中点的纵坐标为4.

(1)求抛物线的标准方程;

(2)若不过原点且斜率存在的直线与抛物线相交于两点,且.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆经过点.设椭圆的左顶点为,右焦点为,右准线与轴交于点,且为线段的中点.

(1)求椭圆的标准方程;

(2)若过点的直线与椭圆相交于另一点轴上方),直线与椭圆相交于另一点,且直线垂直,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)求直线被曲线所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):

学生

高一

高二

高三

满意

500

600

900

不满意

300

200

300

1)求从所有参与调查的人中任选1人是高三学生的概率;

2)从参与调查的高三学生中,用分层抽样的方法抽取4人,在这4人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.某班位同学从文学、经济和科技三类不同的图书中任选一类,不同的结果共有种;

B.甲乙两人独立地解题,已知各人能解出的概率分别是,则题被解出的概率是

C.某校名教师的职称分布情况如下:高级占比,中级占比,初级占比,现从中抽取名教师做样本,若采用分层抽样方法,则高级教师应抽取人;

D.两位男生和两位女生随机排成一列,则两位女生不相邻的概率是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据新高考改革方案,某地高考由文理分科考试变为“3+3”模式考试.某学校为了解高一年425名学生选课情况,在高一年下学期进行模拟选课,统计得到选课组合排名前4种如下表所示,其中物理、化学、生物为理科,政治、历史、地理为文科,“√”表示选择该科,“×”表示未选择该科,根据统计数据,下列判断错误的是

学科

人数

物理

化学

生物

政治

历史

地理

124

×

×

×

101

×

×

×

86

×

×

×

74

×

×

×

A. 4种组合中,选择生物学科的学生更倾向选择两理一文组合

B. 4种组合中,选择两理一文的人数多于选择两文一理的人数

C. 整个高一年段,选择地理学科的人数多于选择其他任一学科的人数

D. 整个高一年段,选择物理学科的人数多于选择生物学科的人数

查看答案和解析>>

同步练习册答案