精英家教网 > 高中数学 > 题目详情
3.$\overline{z}$表示复数z的共轭复数,若复数z满足|z|-$\overline{z}$=2+4i,则z=3+4i.

分析 通过设z=a+bi、$\overline{z}$=a-bi,代入|z|-$\overline{z}$=2+4i,利用复数相等计算即可.

解答 解:设z=a+bi,则$\overline{z}$=a-bi,
∵|z|-$\overline{z}$=2+4i,
∴$\sqrt{{a}^{2}+{b}^{2}}$-(a-bi)=($\sqrt{{a}^{2}+{b}^{2}}$-a)+bi=2+4i,
∴$\left\{\begin{array}{l}{\sqrt{{a}^{2}+{b}^{2}}-a=2}\\{b=4}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=3}\\{b=4}\end{array}\right.$,
∴z=3+4i,
故答案为:3+4i.

点评 本题考查复数求模,利用复数相等是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2),F1、F2为椭圆的左、右焦点,A、B为椭圆的左、右顶点,点P为椭圆上异于A、B的动点,且直线PA、PB的斜率之积为-$\frac{1}{2}$.
(1)求椭圆的方程;
(2)若动直线l与椭圆有且仅有一个公共点,求证:点F1、F2到直线l的距离乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,有两条相交成60°角的直路XX′,YY′,交点是O,甲和乙同时从点O出发,甲沿着OX的方向,乙沿着OY的方向,经过若干小时后,甲到达点A,乙到达点B,此时甲测得他走过的路程比他到乙的距离多2km,且乙走过的路程超过4km,设甲到达点A,乙到达点B时,乙走过的路程为x km,甲走过的路程为y km.
(1)求甲走过的路程y km与乙走过的路程x km的函数关系式;
(2)设甲到达点A,乙到达点B时,两人走过的路程之和为S km,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙两人下棋,结果是一人获胜或下成和棋,已知甲不输的概率为0.6,乙不输的概率为0.7,则两人下成和棋的概率为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+1,a为实数.
(1)解不等式f(x)>0,
(2)当x>0时,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{e}^{x}}{x}$,g(x)=x+$\frac{1}{x}$,h(x)=[f(x)-a][g(x)+a],给出下列四个命题:
①?x∈(0,+∞),f(x)>g(x)恒成立;
②?x∈(-∞,0),使得f(x)<g(x)成立;
③当-2<a<0或a=2时,h(x)有且只有一个零点;
④若h(x)有且只有三个零点,则a<-2或a=e,
其中真命题为①③④.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.安徽省2015年高考文科考试科目有语文、数学、英语和文综,文综是指政治、历史、地理等三科合在一张卷子上,请你将图补充完整.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某品牌乒乓球按质量标准分为1,2,3,4四个等级,现从某工厂生产的一批乒乓球中随机抽取20个,对其等级进行统计分析,得到的频率分布表如下:
等级1234
频率mn0.50.2
(Ⅰ)在抽取的20个乒乓球中,等级为1的恰有2个,求m,n的值;
(Ⅱ)在(Ⅰ)的条件下,从等级为1和2的乒乓球中任意抽取2个,求抽取的2个乒乓球等级相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若输入x的值为2+log23,则输出y的值为(  )
A.$\frac{8}{3}$B.8C.12D.24

查看答案和解析>>

同步练习册答案