A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{2\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
分析 由异面直线所成的角的定义,先作出这个异面直线所成的角的平面角,即连接B1C,再证明∠AB1C就是异面直线AB1与 A1D所成的角,最后在△AB1C中计算此角的余弦值即可.
解答 解:如图连接C1D,则C1D∥AB1,
∴∠BC1D就是异面直线AB1与BC1所成的角.AB=BC=2,AA1=1,
在△BC1D中,BD=$\sqrt{2}$,BC1=DC1=$\sqrt{5}$,
∴cosBC1D=$\frac{5+5-({2\sqrt{2})}^{2}}{2×\sqrt{5}×\sqrt{5}}$=$\frac{1}{5}$.
∴异面直线AB1与A1D所成的角的余弦值为:$\frac{1}{5}$.
故选:A.
点评 本题考查了异面直线所成的角的定义和求法,先作再证后计算,将空间角转化为平面角的思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,6)) | B. | (3,6) | C. | (-6,3)) | D. | [-3,6] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2≤m≤4 | B. | R | C. | 2<m<4 | D. | m>4或m<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com