已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.
(1) (2)不能
解析试题分析:(1)由抛物线的定义可得知,轨迹为抛物线, P(1,0)看作焦点,直线l:x=-1看作准线.从而得出轨迹方程.
(2) 先得出直线的方程,代入圆的方程中可求出直线与圆的交点,再利用两点间距离公式列出方程组,最后验证.
试题解析:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线, (2分)
所以曲线M的方程为,如上图. (4分)
(2)由题意得,直线的方程为
(6分)
由 消去
,得
解得 (10分)
存在这样的C点,使得为以
为两腰的等腰三角形,
设则
解得 (13分)
但是不符合(1),所以上面方程组无解,因此直线l上不存在点C使得
是正三角形 (14分)
考点:抛物线的有关知识,两点间的距离公式.
科目:高中数学 来源: 题型:解答题
已知椭圆:
(
)过点
,且椭圆
的离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个焦点为
,过点
且垂直于长轴的直线被椭圆
截得的弦长为
;
为椭圆
上的四个点。
(Ⅰ)求椭圆的方程;
(Ⅱ)若,
且
,求四边形
的面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且
(O为坐标原点),求实数k的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上,长轴长为
,且点
在椭圆
上.
(1)求椭圆的方程;
(2)设是椭圆
长轴上的一个动点,过
作方向向量
的直线
交椭圆
于
、
两点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右顶点分别为
、
,离心率
.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点,
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且
与
的两个交点A和B满足
(其中0为原点),求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为的椭圆C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率为
,右准线方程为
,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com