【题目】已知,函数,直线l:.
讨论的图象与直线l的交点个数;
若函数的图象与直线l:相交于,两点,证明:.
【答案】(1)见解析(2)见证明
【解析】
根据函数与方程的关系,设,求函数的导数,研究函数的单调性和极值,结合极值与0的关系进行判断即可.
构造函数,求函数的导数,结合与l的交点坐标,进行证明即可.
解:由題意,令,
则,
令,解得.
所以在上单调递增,
令,解得,所以在上单调递减,
则当时,函数取得极小值,同时也是最小值
,
当,即时,的图象与直线l无交点,
当,即时的图象与直线l只有一个交点.
当,即时的图象与直线l有两个交点.
综上所述,当时,的图象与直线l无交点;
时的图象与直线l只有一个交点,时的图象与直线l有两个交点.
证明:令,
,
,
,即在上单调递增,
,
时,恒成立,
又,
,
,
又
,
在上单调递增,
即
.
科目:高中数学 来源: 题型:
【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中.
若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;
若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域为,记函数.
(1)求实数的值;
(2)存在使得不等式成立,求实数的取值范围;
(3)若关于的方程有5个不等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:,直线1过原点O.
(1)若直线l与圆C相切,求直线l的斜率;
(2)若直线l与圆C交于A、B两点,点P的坐标为,若.求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于复数的四个命题中,正确的个数是( )
(1)若,则复数对应的动点的轨迹是椭圆;
(2)若,则复数对应的动点的轨迹是双曲线;
(3)若,则复数对应的动点的轨迹是抛物线;
(4)若,则的取值范围是
A.4B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元今年,工厂第一次投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量年递增10万只,第次投入后,每只产品的固定成本为为常数,且,若产品销售价保持不变,第次投入后的年利润为万元.
(1)求的值,并求出的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和C2的极坐标方程;
(2)直线l的极坐标方程为,直线l与曲线C1和C2分别交于不同于原点的A,B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】摩拜单车和小黄车等各种共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2.5小时收费2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为1小时以上且不超过2小时还车的概率分别为两人用车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的车费相同的概率;
(Ⅱ)设甲乙两人所付的车费之和为随机变量求的分布列及数学期望
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com