精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。
(1)建立适当的坐标系,求曲线E的方程;
(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。
(1)曲线E方程为(2)k的取值范围是
(1)以AB所在直线为x轴,AB的中点O为原点建立直角坐标系,则A(-1,0),B(1,0)
由题设可得
∴动点P的轨迹方程为,则
∴曲线E方程为
(2)直线MN的方程为


∴方程有两个不等的实数根





∵∠MBN是钝角
,即
解得:
又M、B、N三点不共线
 
综上所述,k的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在圆上移动,点在椭圆上移动,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
椭圆与直线相交于两点,且
为原点).
(1)求证:为定值;(2)若离心率,求椭圆长轴的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点是椭圆上一点,且的等差中项,则椭圆的标准方程是(     ).
A.B.C.D.

查看答案和解析>>

同步练习册答案