精英家教网 > 高中数学 > 题目详情
11.复数z=3-i,i为虚数单位,则$z•\overline z$=10.

分析 写出复数的共轭复数,利用多项式乘法求解即可.

解答 解:复数z=3-i(其中i为虚数单位),则$\overline{z}$=3+i,
∴$z•\overline z$=(3-i)(3+i)=10.
故答案为:10.

点评 本题考查复数的基本运算,共轭复数的运算,考查复数基本的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.等差数列{an}的前n项和为Sn,且a2=-5,a6=a4+6.
(1)求该等差数列{an}的通项公式及第20项a20
(2)求S10
(3)判断79是不是该数列的项,如果是,是第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C的对边分别为a、b、c,且cos2A+2$\sqrt{2}$cos(B+C)=-2.
(I)求∠A的大小.
(Ⅱ)若a=2$\sqrt{5}$,△ABC的面积S=6,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知幂函数f(x)=xa的图象经过点(4,2),则f(100)=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.满足{1,2,3}⊆M?{1,2,3,4,5,6}的集合M的有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线方程为$y=\sqrt{3}x$,则双曲线的焦点为(±2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2,g(x)=x-1.若x<2,求g(x)+$\frac{1}{g(x-1)}$的最大值,并求相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=-4x+1,写出分段函数f(x)的解析式$f(x)=\left\{{\begin{array}{l}{-4x+1}\\ 0\\{-4x-1}\end{array}\begin{array}{l}{,x>0}\\{,x=0}\\{,x<0}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l1:x-2y-1=0与l2:x-2y+c=0的距离为$\sqrt{5}$,则c的值为(  )
A.-6B.6C.4D.-6或4

查看答案和解析>>

同步练习册答案