精英家教网 > 高中数学 > 题目详情
已知点A(-1,0),B(1,-1)和抛物线C:y2=4x,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图
(1)证明:为定值;
(2)若△POM的面积为,求向量的夹角;
(3)证明直线PQ恒过一个定点.
解:(1)设点
∵P、M、A三点共线,
∴ kAM=kPM


∴y1y2=4,

为定值.
(2)解:设∠POM=α,则·cosα=5.
·sinα=5.
由此可得tanα=1,又α∈(0,π),
∴α=45°,
故向量的夹角为45°.
(3)证明:设点
∵M、B、Q三点共线,
∴kBQ= kOM


∴(y3+1)(y1+y3)=
即y1y3+y1+y3+4=0.
由(1)知y1y2=4,即

即4(y2+y3)+y2y3+4=0.(*)
 ∵
∴直线PQ的方程是
(y-y2)(y2+y3)=
即y(y2+y3)-y2y3=4x
由(*)式,得-y2y3=4(y2+y3)+4,代入上式,得(y+4)(y2+y3)=4(x-1).
由此可知直线PQ过定点(1,-4)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案