精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为等差数列{an}的前n项和,a1=25,a4=16,当n=时,Sn取得最大值

【答案】9;117
【解析】解:∵{an}是等差数列,其中a1=25,a4=16,
∴由a4=a1+3d,得16=25+3d,解得d=﹣3.
∴an=a1+(n﹣1)d=25﹣3(n﹣1)=28﹣3n.
由an<0,得28﹣3n<0,
解得n>
∴a1>a2>…>a9>0>a10>a11>…
故n=9时,Sn最大值=9×25+ ×(﹣3)=117.
故答案是:9;117.
【考点精析】关于本题考查的等差数列的性质,需要了解在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,其中判断框内应填入的条件是(

A.i≤2011
B.i>2011
C.i≤1005
D.i>1005

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=cos(3x+ )的图象向左平移 个单位后,得到的图象可能为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上面图给出的是计算1+2+4+…+22017的值的一个程序框图,则其中判断框内应填入的是(
A.i=2017?
B.i≥2017?
C.i≥2018?
D.i≤2018?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知3sinα﹣2cosα=0,求下列式子的值:
(1) +
(2)sin2α﹣2sinαcosα+4cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)在区间(0,1)和[1,+∞)上的单调性(不必证明);
(2)当0<a<b,且f(a)=f(b)时,求 的值;
(3)若存在实数a,b(1<a<b)使得x∈[a,b]时,f(x)的取值范围是[ma,mb](m≠0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.

(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: +y2=1. (Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1
(Ⅱ)经过椭圆C的左焦点F1作直线l,直线l与椭圆C相交于A,B两点,若|AB|= ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设 ,c=f(0.20.6),则a,b,c的大小关系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

查看答案和解析>>

同步练习册答案