精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线为参数,实数),曲线为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点.当时,;当.

(1)求的值.

(2)求的最大值.

【答案】(1)(2)

【解析】

(Ⅰ)由曲线消去参数,得到曲线的普通方程,再由极坐标方程与直角的互化公式,得到曲线的极坐标方程,由题意可得当时,得,当时,.

(Ⅱ)由(Ⅰ)可得的极坐标方程,进而得到的表达式,利用三角函数的性质,即可求解.

(Ⅰ)由曲线为参数,实数),

化为普通方程为,展开为:

其极坐标方程为,即,由题意可得当时,,∴.

曲线为参数,实数),

化为普通方程为,展开可得极坐标方程为

由题意可得当时,,∴.

(Ⅱ)由(Ⅰ)可得的极坐标方程分别为.

,∴的最大值为

时取到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,为两个不同的平面,则下列命题中正确的有  

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设,当时,求函数的定义域,判断并证明函数的奇偶性;

2)是否存在实数,使函数上单调递减,且最小值为1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,点分别是轴,轴上的动点,且满足.若点满足为坐标原点).

(Ⅰ)求点的轨迹的方程;

(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点,试判断以线段为直径的圆是否经过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如图.

1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M的概率;

(2)据了解,某网络运营商推出两款流量套餐,详情如下:

套餐名称

月套餐费(单位:元)

月套餐流量(单位:M

A

20

700

B

30

1000

流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l12xy20l2x2y40,点P(1, m)

)若点P到直线l1, l2的距离相等,求实数m的值;

)当m1时,已知直线l经过点P且分别与l1, l2相交于A, B两点,若P恰好

平分线段AB,求A, B两点的坐标及直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,

1)若关于的不等式的解集为,求实数的值;

2)求不等式的解集;

3)若对于恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案