精英家教网 > 高中数学 > 题目详情

【题目】下列命题中不正确的个数是(

①若直线上有无数个点不在平面内,则

②和两条异面直线都相交的两条直线异面;

③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;

④一条直线和两条异面直线都相交,则它们可以确定两个平面.

A.0B.1C.2D.3

【答案】D

【解析】

A:根据线面位置关系进行判断即可;

B:通过长方体举特例进行判断即可;

C:根据线面平行的性质进行判断即可;

D:根据确定平面定理,结合异面直线的定义进行判断即可.

A:当直线与平面相交时,直线上也存在有无数个点不在平面内,故本说法不正确;

B:如下图,在长方体中,都与异面直线都相交,而是相交直线,故本说法不正确;

C:如果两条平行直线中的一条与一个平面平行,那么另一条有可能在该平面内,故本说法不正确;

D:两个相交线可以确定一个平面,因此一条直线和两条异面直线都相交,一共能确定两个平面,如果这两个平面重合,这与异面直线的定义相矛盾,故本说法是正确的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解初三学生的体育锻炼情况,随机抽取了40名学生对一周的体育锻炼时间长(单位:小时)进行统计,并将数据整理如下:

时间长

性别

1

2

3

6

8

0

2

10

6

2

1)采用样本估计总体的方式,试估计该校的所有学生中一周的体育锻炼时间长为的概率;

2)若将一周的体育锻炼时间长不低于3小时的评定为体育锻炼合格者,否则为不合格者,根据以上数据完成下面的列联表,并据此判断能否有95%的把握认为体育锻炼与性别有关?附:,其中.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为.

(1)求函数的解析式;

(2)求在区间上的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题:其中所有正确命题的序号是_________

①函数的最小正周期为

②在中,若,则一定是钝角三角形;

③函数的图象必经过点(32);

④若命题是假命题,则实数的取值范围为

的图象向左平移个单位,所得图象关于轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,焦距为

1)求椭圆的标准方程;

2)若一直线与椭圆相交于两点(不是椭圆的顶点),以为直径的圆过椭圆的上顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

0-50

51-100

101-150

151-200

201-250

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与轴相切,点关于圆心的对称点为,点的轨迹为.

1)求曲线的方程;

2)一条直线经过点,且交曲线两点,点为直线上的动点.

①求证:不可能是钝角;

②是否存在这样的点,使得是正三角形?若存在,求点的坐标:否则,说明理由.

查看答案和解析>>

同步练习册答案