精英家教网 > 高中数学 > 题目详情

【题目】已知U=RA={x|a2x2-5ax-6<0}B{x||x-2|≥1}.

1)若a=1,求(UAB

2)求不等式a2x2-5ax-6<0aR)的解集.

【答案】1{x|x≤-1x≥6};(2a=0时,不等式的解集为Ra>0时,不等式的解集为(-);a<0时,不等式的解集为(-.

【解析】

1)解不等式求出集合,再由集合运算法则计算.

2)分类讨论,时,方程两根为,按它们的大小分类得解集.

1a=1时,A={x|x2-5x-6<0}={x|-1<x<6}B={x||x-2|≥1}={x|x≤1x≥3}

UA={x|x≤-1x≥6}

则(UAB={x|x≤-1x≥6}

2a=0时,不等式化为-6<0,解集为R

a≠0时,不等式化为(ax+1)(ax-6<0,即(x+)(x-<0

a>0,则-<,不等式的解集为(-);

a<0,则->,不等式的解集为(-);

综上知,a=0时,不等式的解集为R

a>0时,不等式的解集为(-);

a<0时,不等式的解集为(-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等轴双曲线的右焦点为为坐标原点,过作一条渐近线的垂线且垂足为.

1)求等轴双曲线的方程;

2)若过点且方向向量为的直线交双曲线两点,求的值;

3)假设过点的动直线与双曲线交于两点,试问:在轴上是否存在定点,使得为常数,若存在,求出的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.

(1)请解释的实际意义,并求的表达式;

(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为正方形, 平面 ,点分别为的中点.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.

年龄

人数

100

150

200

50

已知三个年龄段的上网购物的人数依次构成递减的等比数列.

(1)求的值;

(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,又点在该椭圆上.

1)求椭圆的方程;

2)若斜率为的直线与椭圆交于不同的两点,求的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )

A. 抽出的100人中,年龄在40~45岁的人数大约为20

B. 抽出的100人中,年龄在35~45岁的人数大约为30

C. 抽出的100人中,年龄在40~50岁的人数大约为40

D. 抽出的100人中,年龄在35~50岁的人数大约为50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

(1)求的取值范围;

(2)的两个极值点,证明:.

查看答案和解析>>

同步练习册答案