精英家教网 > 高中数学 > 题目详情
6.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点到抛物线y2=4x的准线的距离为5.

分析 求出抛物线的准线方程,双曲线的右焦点坐标,然后求解距离即可.

解答 解:抛物线y2=4x的准线为:x=-1,
双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点:(4,0),
所以双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点到抛物线y2=4x的准线的距离为:5.
故答案为:5.

点评 本题考查抛物线以及双曲线的简单性质的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$(x>-1),设F(x)=f(x-4),且函数F(x)的零点在区间[a-1,a](a∈Z)内,则${(x+\frac{a}{2})}^{a}$的展开式中x3的系数为(  )
A.20B.15C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x-a|+2x.若存在x0∈[1,3]满足f(x)≤2x+1,求所有的实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=$\frac{ln3}{3}$、b=$\frac{1}{e}$、c=ln$\sqrt{2}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=tan$\frac{x}{a}$(a∈N*)的最小正周期是aπ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(1)抛物线y2=2px(p>0)上一点M到焦点的距离是a(a>$\frac{p}{2}$),则点M到准线的距离是a,点M的横坐标是a-$\frac{p}{2}$;
(2)抛物线y2=12x上与焦点的距离等于9的点的坐标是(6,±6$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设有不同的直线a,b和不同的平面α,β,γ,给出三个命题:
①若a∥α,b∥α,则a∥b
②若a∥α,a∥β,则α∥β
③若α∥β,β∥γ,则α∥γ,
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x,y,z>0.a,b,c是x,y,z的-个排列.求证:$\frac{a}{x}+\frac{b}{y}+\frac{c}{z}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在区间[-2,2]上单调递增的是(  )
A.f(x)=sinxB.f(x)=ax+a-x(a>0,a≠1)
C.f(x)=ln$\frac{3+x}{3-x}$D.f(x)=ax-a-x,(a>0,a≠1)

查看答案和解析>>

同步练习册答案