精英家教网 > 高中数学 > 题目详情

【题目】一张坐标纸上涂着圆E 及点P10),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与直线EP'交于点M

1)求的轨迹的方程;

2)直线C的两个不同交点为AB,且l与以EP为直径的圆相切,若,求ABO的面积的取值范围.

【答案】(1);(2).

【解析】试题分析: 折痕为的垂直平分线,则,推导出的轨迹是以 为焦点的椭圆,且,由此能求出的轨迹的方程;

为直径的圆相切,从而,由,得

,由此利用根的判别式,韦达定理,向量的数量积,弦长公式,三角形面积公式,能求出的面积的取值范围。

解析:(1)折痕为PP的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为2

|ME|+|MP|=|ME|+|MP′|=2|EP|

E的轨迹是以EP为焦点的椭圆,且a=c=1

b2=a2c2=1 M的轨迹C的方程为

2l与以EP为直径的圆x2+y2=1相切,

Ol即直线AB的距离:=1,即m2=k2+1

,消去y,得(1+2k2x2+4kmx+2m2﹣2=0

∵直线l与椭圆交于两个不同点,

∴△=16k2m2﹣81+2k2)(m2﹣1=8k20k20

Ax1y1),Bx2y2),则

y1y2=kx1+m)(kx2+m=k2x1x2+kmx1+x2+m2=

=x1x2+y1y2=

==

μ=k4+k2,则=

SAOB关于μ[2]单调递增,

∴△AOB的面积的取值范围是[]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:

超过

不超过

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的标准方程;

(Ⅱ)若点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇质数,是小于的正整数.证明:的充分必要条件是,对任何小于的正整数,均有等于正奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数的一种方法.例如:3可表示为“”,26可表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用9数字表示两位数的个数为  

A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

同步练习册答案