(本小题共14分)函数,,.
(1)①试用含有的式子表示;②求的单调区间;
(2)对于函数图像上的不同两点,,如果在函数图像上存在点(其中在与之间),使得点处的切线∥,则称存在“伴随切线”,当时,又称存在“中值伴随切线”。试问:在函数的图像上是否存在两点、,使得存在“中值伴随切线”?若存在,求出、的坐标;若不存在,说明理由。
科目:高中数学 来源: 题型:
(本小题共14分)
已知函数与的图象相交于,,,分别是的图象在两点的切线,分别是,与轴的交点.
(I)求的取值范围;
(II)设为点的横坐标,当时,写出以为自变量的函数式,并求其定义域和值域;
(III)试比较与的大小,并说明理由(是坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年北京卷)(本小题共14分)
如图,矩形的两条对角线相交于点,边所在直线的方程为点在边所在直线上.
(I)求边所在直线的方程;
(II)求矩形外接圆的方程;
(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题
(本小题共14分)
已知函数.
(Ⅰ)若函数的图象在处的切线斜率为,求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数在上是减函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年北京市宣武区高三第二次模拟考试数学(理) 题型:解答题
(本小题共14分)
已知函数.
(I)判断函数的单调性;
(Ⅱ)若+的图像总在直线的上方,求实数的取值范围;
(Ⅲ)若函数与的图像有公共点,且在公共点处的切线相同,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com