精英家教网 > 高中数学 > 题目详情

【题目】一平面上有32个点其中无三点共线证明在这32个点中至少能找到2135个四点组形成凸四边形的四个顶点

【答案】见解析

【解析】

因为个点中无三点共线所以个点中以任意三点为顶点可作个三角形

其中面积最大者设为

过点分别作对边的平行线相交得

由于面积最大故其余个点在

又过其中任意两点的直线至多与的两条边相交不妨设直线与边不相交是凸四边形的四个顶点

因此个点中任意两点与点中某两点可连出一个凸四边形

所以至少有个四点组为凸四边形的四个顶点其中,中两点直线与边不相交

再考虑点和上述个点的集合,知至少有个满足条件的四点组

继续讨论下去个点中满足条件的四点组至少有

代入得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2, EF分别为棱的中点.

(1)求证:直线BE∥平面

(2)平面与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线C上的一点,线段PF1与y轴的交点M恰好是线段PF1的中点,,其中O为坐标原点,则双曲线C的渐近线的斜率与离心率分别是( )

A. ±1, B. 1, C. ±2, D. 2,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假,因为新冠疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.

1)完成列联表,并回答能否有的把握认为对线上教学是否满意 与性别有关

态度

性别

满意

不满意

合计

男生

女生

合计

100

2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】低密度脂蛋白是一种运载胆固醇进入外周组织细胞的脂蛋白颗粒,可被氧化成氧化低密度脂蛋白,当低密度脂蛋白,尤其是氧化修饰的低密度脂蛋白过量时,它携带的胆固醇便积存在动脉壁上,久了容易引起动脉硬化,因此低密度脂蛋白被称为“坏的胆固醇”.为了调查某地中年人的低密度脂蛋白浓度是否与肥胖有关,随机调查该地100名中年人,得到2×2列联表如下:

肥胖

不肥胖

总计

低密度脂蛋白不高于

12

63

75

低密度脂蛋白高于

8

17

25

总计

20

80

100

由此得出的正确结论是( )

A.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

B.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

C.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

D.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)求曲线C的极坐标方程;

(2)设直线l的极坐标方程为,若直线l与曲线C交于M,N两点,且,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;

“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.

甲每天生产的次品数/件

0

1

2

3

4

对应的天数/天

40

20

20

10

10

乙每天生产的次品数/件

0

1

2

3

对应的天数/天

30

25

25

20

(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;

(2)按这100天统计的数据,分别求甲、乙两名工人的平均日利润.

查看答案和解析>>

同步练习册答案