精英家教网 > 高中数学 > 题目详情
已知函数,设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求函数上的最小值.
(1)  (2)

试题分析:(1)
的单调递增区间为,单调递减区间
 
(2)当时,上单调递增,
时,上单调递增,在上单调递减
  
时,上单调递增,在上单调递减,
同理
综上:当上的最小值为
点评:对于导数在研究函数中的运用,一般考查了导数的符号与函数单调性的关系,以及函数的最值,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图像关于原点对称.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则方程的不相等的实根个数为(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知偶函数上是增函数,则不等式的解集是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义在上的奇函数,当时,有(其中为自然对数的底,).
(1)求函数的解析式;
(2)设,求证:当时,
(3)试问:是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的定义域为,对任意的实数都有;当时,,且.(1)判断并证明上的单调性;
(2)若数列满足:,且,证明:对任意的

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的定义域都是R,则成立的充要条件是(   )
A.有一个,使B.有无数多个,使
C.对R中任意的x,使D.在R中不存在x,使

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数函数,若存在,使得成立,则实数a的取值范围是    

查看答案和解析>>

同步练习册答案