精英家教网 > 高中数学 > 题目详情

【题目】已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为(  )
A.
B.
C.或24
D.或12

【答案】C
【解析】解:连接AB、CD;
①当点P在CA的延长线上,即P在平面α与平面β的同侧时,如图1;
∵α∥β,平面PCD∩α=AB,平面PCD∩β=CD,
∴AB∥CD,∴=
∵PA=6,AC=9,PD=8,
= , 解得BD=
②当点P在线段CA上,即P在平面α与平面β之间时,如图2;
类似①的方法,可得=
∵PA=6,PC=AC﹣PA=9﹣6=3,PD=8,
= , 解得PB=16;
∴BD=PB+PD=24;
综上,BD的长为或24.
故选:C.

【考点精析】掌握平面与平面平行的性质是解答本题的根本,需要知道如果两个平面同时与第三个平面相交,那么它们的交线平;可以由平面与平面平行得出直线与直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)p:末位数字为9的整数能被3整除;

(2)p:有的素数是偶数;

(3)p:至少有一个实数x,使x210

(4)pxyRx2y22x4y50.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆:(x﹣a)2+(y﹣b)2=8(a,b为正整数)过点A(0,1),且与直线y﹣3﹣2 =0相切.
(1)求圆C的方程;
(2)若过点M(4,﹣1)的直线l与圆C相交于E,F两点,且 =0.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中 ,点为线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = +
(1)求证:A、B、C三点共线;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值为﹣ ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岛上有一座海拔的山峰,山顶设有一个观察站,有一艘轮船按一固定方向做匀速直线航行,上午时,测得此船在岛北偏东、俯角为处,到时,又测得该船在岛北偏西、俯角为的处.

1)求船的航行速度;

2)求船从行驶过程中与观察站的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).

(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择

程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.

①当时,写出的所有可能取值;

②若选择课程的同学都参加科学营活动,求元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件: ;则z=x﹣2y的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若要按从大到小给7,5,9,3,10五个数排序,试写出算法.

查看答案和解析>>

同步练习册答案