精英家教网 > 高中数学 > 题目详情

已知函数f(x)=4x3+3tx2-6t2xt-1,x∈R,其
t∈R.
①当t=1时,求曲线yf(x)在点(0,f(0))处的切线方程;
②当t≠0时,求f(x)的单调区间.

①6xy=0②在上递增,上递减,(-t,+∞)上递增.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(其中),,已知它们在处有相同的切线.
(1)求函数的解析式;
(2)求函数上的最小值;
(3)判断函数零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=aln x+x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=2x3ax2bx+1的导数为f′(x),若函数yf′(x)
的图象关于直线x=-对称,且f′(1)=0.
①求实数ab的值;②求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过曲线y=ex上的点P(1,e)且与曲线在该点处的切线垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某汽车的紧急刹车装置在遇到特别情况时,需在2 s内完成刹车,其位
移(单位:m)关于时间(单位:s)的函数为:s(t)=-3t3t2+20,求:
(1)开始刹车后1 s内的平均速度;
(2)刹车1 s到2 s之间的平均速度;
(3)刹车1 s时的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数)
(1)求函数的单调区间;
(2)设函数,存在实数,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:时,恒成立;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案