【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,记函数在上的最大值为,最小值为,求的取值范围.
科目:高中数学 来源: 题型:
【题目】“互联网”是“智慧城市”的重要内士,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;
(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线经过点,倾斜角,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线.
(Ⅰ)求曲线C的直角坐标方程并写出直线l的参数方程;
(Ⅱ)直线l与曲线C的交点为A,B,求点P到A、B两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面,分别是的中点.
(1)求证:平面平面;
(2)若是线段上一点,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)利用“五点法”画出函数在长度为一个周期的闭区间的简图.
列表:
x | |||||
y |
作图:
(2)并说明该函数图象可由的图象经过怎么变换得到的.
(3)求函数图象的对称轴方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com