精英家教网 > 高中数学 > 题目详情

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

(x+3)2+(y+2)2=25.

解析试题分析:设圆心坐标为C(a,a+1),根据A、B两点在圆上利用两点的距离公式建立关于a的方程,解出a值,从而算出圆C的圆心和半径,可得圆C的方程.
试题解析:∵圆心在直线x-y+1=0上,
∴设圆心坐标为C(a,a+1),
根据点A(1,1)和B(2,-2)在圆上,
可得(a?1)2+(a+1?1)2=(a?2)2+(a+1+2)2
解之得a=-3,
∴圆心坐标为C(-3,2),
半径r2=(?3?1)2+(?3+1?1)2=25,
r=5,
∴此圆的标准方程是(x+3)2+(y+2)2=25.
考点:圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使的长取得最小值的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程:,其中.
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在直线上,且与直线相切于点.
(Ⅰ)求圆方程;
(Ⅱ)点与点关于直线对称.是否存在过点的直线与圆相交于两点,且使三角形为坐标原点),若存在求出直线的方程,若不存在用计算过程说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内两点(-1,1),(1,3).
(Ⅰ)求过两点的直线方程;
(Ⅱ)求过两点且圆心在轴上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P(0,5)及圆C:x2+y2+4x-12y+24=0
(I)若直线l过点P且被圆C截得的线段长为4,求l的方程;
(II)求过P点的圆C的弦的中点D的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线 与圆交与两点,点.
(1)当时,求的值;
(2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.
(Ⅰ)求直线PQ与圆C的方程;
(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

同步练习册答案