精英家教网 > 高中数学 > 题目详情

已知实数x,y满足x2+y2+4y=0,则s=x2+2y2-4y的最小值为


  1. A.
    48
  2. B.
    20
  3. C.
    0
  4. D.
    -16
C
分析:利用消元法,让x2都用含y的代数式表示,求出y的范围,再代入s=x2+2y2-4y,根据二次函数的最值问题得出答案即可.
解答:∵x2+y2+4y=0
∴x2=-y2-4y≥0则-4≤y≤0
则s=x2+2y2-4y=-y2-4y+2y2-4y=y2-8y
对称轴y=4不在[-4,0]上,故取y=0时取最大值0
故选C.
点评:本题考查了函数的最值问题,将问题转化成二次函数是解此题的关键,开口向上有最小值,开口向下有最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x2
a2
-
y2
b2
=1(a>0,b>0)
,则下列不等式中恒成立的是(  )
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y≥0
x≤1.
则z=2x+4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥0
y≥0
x+y≤s
y+2x≤4
,当2≤s≤3时,目标函数z=3x+2y的最大值函数f(s)的最小值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江一模)已知实数x,y满足
x≥1
y≤2
x-y≤0
,则x2+y2的最小值是(  )

查看答案和解析>>

同步练习册答案