精英家教网 > 高中数学 > 题目详情
若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是( )
A.
B.
C.
D.
【答案】分析:先求出圆心和半径,比较半径和;要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.
解答:解:圆x2+y2-4x-4y-10=0整理为
∴圆心坐标为(2,2),半径为3
要求圆上至少有三个不同的点到直线l:ax+by=0的距离为
则圆心到直线的距离应小于等于




直线l的倾斜角的取值范围是
故选B.
点评:本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆x2+y2-4x+2y+1=0关于直线ax-2by-1=0(a,b∈R)对称,则ab的取值范围是(  )
A、(-∞,
1
4
]
B、(-∞,
1
16
]
C、(-
1
4
,0]
D、[
1
16
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

7、若圆x2+y2+4x+2by+b2=0与x轴相切,则b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2-4x-5=0与圆x2+y2-2x-4y-4=0交点为A,B,求:
(1)线段AB的垂直平分线方程.
(2)线段AB所在的直线方程.
(3)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2-4x-4y-10=0上恰有三个不同的点到直线l:y=kx的距离为2
2
,则k=
2+
3
或2-
3
2+
3
或2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2-4x+2y-1=0关于直线3mx+2ny-1=0对称,则m2+n2的最小值是(  )

查看答案和解析>>

同步练习册答案