精英家教网 > 高中数学 > 题目详情

【题目】设=(1+cos x,1+sin x),=(1,0),=(1,2).
(1)求证:()⊥();
(2)求||的最大值,并求此时x的值.

【答案】解:(1)由题意可得=(cosx,1+sinx),
=(cosx,sinx﹣1),
∴()()=cos2x+sin2x﹣1=0,
∴()⊥(
(2)由题意可得||2=(1+cosx)2+(1+sinx)2
=3+2(sinx+cosx)=3+2sin(x+),
由三角函数的值域可知,当x+=2kπ+
即x=2kπ+(k∈Z)时,||2取最大值3+2
此时||2取最大值=+1
【解析】(1)由题意可得的坐标,计算其数量积为0即可;(2)由题意可得||2的不等式,由三角函数的值域可得||2的最大值,开方可得所求.
【考点精析】本题主要考查了数量积判断两个平面向量的垂直关系的相关知识点,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若不等式x2+2ax+1≥0对于一切x∈(0, ]成立,则a的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

(Ⅰ)若函数在区间上存在零点,求实数的取值范围;

(Ⅱ)问:是否存在常数,当时, 的值域为区间,且的长度为.(说明:对于区间,称为区间长度)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为常数, 为自然对数的底数).

(Ⅰ)当时,讨论函数在区间上极值点的个数;

(Ⅱ)当 时,对任意的都有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果实数m、n满足不等式组 , 那么m2+n2的取值范围是(  )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直二面角中,四边形是边长为2的正方形,上的点,且平面.

(1)求证:

(2)求二面角的余弦值;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且对任意 , 恒有f(x)>0,求a的取值范围;
(2)若f(x)的最大值为1,最小值为﹣4,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案