【题目】设=(1+cos x,1+sin x),=(1,0),=(1,2).
(1)求证:(﹣)⊥(﹣);
(2)求||的最大值,并求此时x的值.
【答案】解:(1)由题意可得﹣=(cosx,1+sinx),
﹣=(cosx,sinx﹣1),
∴(﹣)(﹣)=cos2x+sin2x﹣1=0,
∴(﹣)⊥(﹣)
(2)由题意可得||2=(1+cosx)2+(1+sinx)2
=3+2(sinx+cosx)=3+2sin(x+),
由三角函数的值域可知,当x+=2kπ+,
即x=2kπ+(k∈Z)时,||2取最大值3+2,
此时||2取最大值=+1
【解析】(1)由题意可得﹣和﹣的坐标,计算其数量积为0即可;(2)由题意可得||2的不等式,由三角函数的值域可得||2的最大值,开方可得所求.
【考点精析】本题主要考查了数量积判断两个平面向量的垂直关系的相关知识点,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知二次函数
(Ⅰ)若函数在区间上存在零点,求实数的取值范围;
(Ⅱ)问:是否存在常数,当时, 的值域为区间,且的长度为.(说明:对于区间,称为区间长度)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果实数m、n满足不等式组 , 那么m2+n2的取值范围是( )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且对任意 , 恒有f(x)>0,求a的取值范围;
(2)若f(x)的最大值为1,最小值为﹣4,求实数a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, 在直角梯形中, , , , 为线段的中点. 将沿折起,使平面 平面,得到几何体,如图2所示.
(1)求证: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com