精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点.(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1、PF2的斜线分别为k1、k2.①证明:
1
k1
-
3
k2
=2
;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.
分析:(1)利用椭圆过已知点和离心率,联立方程求得a和b,则椭圆的方程可得.
(2)①把直线PF1、PF2的方程联立求得交点的坐标的表达式,代入直线x+y=2上,整理求得
1
k1
-
3
k2
=2
,原式得证.
②设出A,B,C,D的坐标,联立直线PF1和椭圆的方程根据韦达定理表示出xA+xB和xAxB,进而可求得直线OA,OB斜率的和与CO,OD斜率的和,由kOA+k)B+kOC+kOD=0推断出k1+k2=0或k1k2=1,分别讨论求得p.
解答:解:(1)∵椭圆过点(1,
2
2
)
e=
2
2

a2=2b2,a=
2
,b=c=1

故所求椭圆方程为
x2
2
+y2=1

(2)①由于F1(-1,0)、F2(1,0),PF1,PF2的斜率分别是k1,k2,且点P不在x轴上,
所以k1≠k2,k1≠0,k2≠0.
又直线PF1、PF2的方程分别为y=k1(x+1),y=k2(x-1),
联立方程解得
x=
k1+k2
k2-k1
y=
2k1k2
k2-k1

所以P(
k1+k2
k2-k1
2k1k2
k2-k1
)
,由于点P在直线x+y=2上,
所以
k1+k2
k2-k1
+
2k1k2
k2-k1
=2,即2k1k2+3k1-k2=0

1
k1
-
3
k2
=2

②设A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),联立直线PF1和椭圆的方程得
y=k1(x+1)
x2+2y2=2

化简得(2k12+1)x2+4k12x+2k12-2=0,
因此xA+xB=-
4
k
2
1
2
k
2
1
+1
xAxB=
2
k
2
1
-2
2
k
2
1
+1

所以kOA+kOB=
yA
xA
+
yB
xB
=
k1(xA+1)
xA
+
k1(xB+1)
xB
=2k1+k1
xA+xB
xAxB
=k1(2-
4
k
2
1
2
k
2
1
-2
)=-
2k1
k
2
1
-1

同理可得:kOC+kOD=-
2k2
k
2
2
-1

故由kOA+k)B+kOC+kOD=0得k1+k2=0或k1k2=1,
当k1+k2=0时,由(1)的结论可得k2=-2,解得P点的坐标为(0,2)
当k1k2=1时,由(1)的结论可得k2=3或k2=-1(舍去),
此时直线CD的方程为y=3(x-1)与x+y=2联立得x=\frac{5}{4},y=
3
4

所以P(
5
4
3
4
)

综上所述,满足条件的点P的坐标分别为P(
5
4
3
4
)
,P(0,2).
点评:本题主要考查了直线与圆锥曲线的关系的综合问题,椭圆的简单性质.考查了学生综合推理能力,基本计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点C(
3
2
3
2
)
且离心率为
6
3
,A、B是长轴的左右两顶点,P为椭圆上意一点(除A,B外),PD⊥x轴于D,若
PQ
QD
,λ∈(-1,0)

(1)试求椭圆的标准方程;
(2)P在C处时,若∠QAB=2∠PAB,试求过Q、A、D三点的圆的方程;
(3)若直线QB与AP交于点H,问是否存在λ,使得线段OH的长为定值,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(I)求椭圆的标准方程;
(II)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,F1,F2分别是椭圆的左、右焦点,B为椭圆的上顶点且△BF1F2的周长为4+2
3

(1)求椭圆的方程;
(2)是否存在这样的直线使得直线l与椭圆交于M,N两点,且椭圆右焦点F2恰为△BMN的垂心?若存在,求出直线l的方程;若不存在,请说明由..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案