精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行六面体中,底面是菱形,四边形是矩形.

(1)求证:

(2)若在棱上,且,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

1)连接于点,由菱形的性质得出,由矩形的性质得出,结合,得出,再利用直线与平面垂直的判定定理证明平面,于是得出

2)先证明平面,再由得知两两相互垂直,建立以点为原点,所在直线为轴、轴、轴的空间直角坐标系,利用向量法求出平面和平面的法向量,再利用向量法求出二面角的余弦值.

1)连接于点

因为底面是菱形,所以,,且的中点,

因为四边形是矩形,所以,

在平行六面体中,,所以,

因为平面

所以,平面

平面

2,且的中点,所以,

平面,所以,平面平面

因为平面平面平面

,所以,两两相互垂直,

分别以所在直线为轴、轴、轴建立如图空间直角坐标系,

又因为,所以,

所以

所以,

所以,

设平面的一个法向量为,则有,即

,则

易得平面的一个法向量为

所以,,所以,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上递增,在上递减,求实数的值.

2))讨论上的单调性;

3)若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,分别从集合中随机取一个元素.落在直线为事件,若事件的概率最大,则的取值可能是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一间宿舍内住有甲乙两人,为了保持宿舍内的干净整洁,他们每天通过小游戏的方式选出一人值日打扫卫生,游戏规则如下:第1天由甲值日,随后每天由前一天值日的人抛掷两枚正方体骰子(点数为),若得到两枚骰子的点数之和小于10,则前一天值日的人继续值日,否则当天换另一人值日.从第2天开始,设“当天值日的人与前一天相同”为事件.

1)求.

2)设表示“第天甲值日”的概率,则,其中.

)求关于的表达式.

)这种游戏规则公平吗?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数fx)满足fx+2)=fx),当x[3,﹣2]时,fx)=﹣x2,则(

A.B.fsin3)<fcos3

C.D.f2020)>f2019

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情防控过程中,某医院一次性收治患者127.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程所表示的曲线为C,给出下列四个命题:

①若C为椭圆,则1t4t

②若C为双曲线,则t4t1

③曲线C不可能是圆;

④若C表示椭圆,且长轴在x轴上,则1t.

其中正确的命题是________(把所有正确命题的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的新四大发明,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1

2

3

4

5

6次及以上

总计

10

8

7

3

2

15

45

5

4

6

4

6

30

55

总计

15

12

13

7

8

45

100

1)把每周使用移动支付超过3次的用户称为移动支付活跃用户,能否在犯错误概率不超过0.005的前提下,认为是否为移动支付活跃用户与性别有关?

2)把每周使用移动支付6次及6次以上的用户称为移动支付达人,视频率为概率,在我市所有移动支付达人中,随机抽取4名用户.

①求抽取的4名用户中,既有男移动支付达人又有女移动支付达人的概率;

②为了鼓励男性用户使用移动支付,对抽出的男移动支付达人每人奖励300元,记奖励总金额为X,求X的分布列及均值.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线为参数,),曲线为参数),相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.

1)求的极坐标方程及点的极坐标;

2)已知直线与圆交于两点,记的面积为的面积为,求的值.

查看答案和解析>>

同步练习册答案