【题目】如图,在平行六面体中,底面是菱形,四边形是矩形.
(1)求证: ;
(2)若点在棱上,且,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)连接交于点,由菱形的性质得出,由矩形的性质得出,结合,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;
(2)先证明平面,再由得知、、两两相互垂直,建立以点为原点,、、所在直线为轴、轴、轴的空间直角坐标系,利用向量法求出平面和平面的法向量,再利用向量法求出二面角的余弦值.
(1)连接交于点,
因为底面是菱形,所以,,且为的中点,
因为四边形是矩形,所以,,
在平行六面体中,,所以,,
因为、平面,,
所以,平面,
平面,;
(2),且为的中点,所以,,
平面,所以,平面平面,
因为平面平面,平面,
,,所以,、、两两相互垂直,
分别以、、所在直线为轴、轴、轴建立如图空间直角坐标系,
又因为,,,所以,,,
所以、、、、,
所以,,,,
所以,,,
设平面的一个法向量为,则有,即,
取,则,,
易得平面的一个法向量为,
所以,,所以,二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】一间宿舍内住有甲乙两人,为了保持宿舍内的干净整洁,他们每天通过小游戏的方式选出一人值日打扫卫生,游戏规则如下:第1天由甲值日,随后每天由前一天值日的人抛掷两枚正方体骰子(点数为),若得到两枚骰子的点数之和小于10,则前一天值日的人继续值日,否则当天换另一人值日.从第2天开始,设“当天值日的人与前一天相同”为事件.
(1)求.
(2)设表示“第天甲值日”的概率,则,其中,.
(ⅰ)求关于的表达式.
(ⅱ)这种游戏规则公平吗?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则( )
A.B.f(sin3)<f(cos3)
C.D.f(2020)>f(2019)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程所表示的曲线为C,给出下列四个命题:
①若C为椭圆,则1<t<4且t≠;
②若C为双曲线,则t>4或t<1;
③曲线C不可能是圆;
④若C表示椭圆,且长轴在x轴上,则1<t<.
其中正确的命题是________(把所有正确命题的序号都填在横线上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 总计 |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
总计 | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?
(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.
①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;
②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X,求X的分布列及均值.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com